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CLASS & TEACHING STYLE

= Active Class
Frequent 1-3 minute discussion sessions
Talking/discussing/explaining concepts helps

= Programming Projects
Code style matters, long methods, variable naming, all are subject to
criticism

" Frequent HWs and Quizzes
No makeup for anything missed

Do not hesitate to interrupt!
® Teaching Style (Criticism ©)
| may not always give direct answers
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LOGISTICS

® [nstructor
Prof. Amrinder Arora

Please copy TA on emails
Please feel free to call as well
©

= Available for study sessions
Science and Engineering Hall
GWU
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mailto:amrinder@gwu.edu
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PURPOSE OF THIS CLASS

Desigh and Analysis of Algorithms

= Designing - Algorithmic Techniques
= Analyzing - how much time an algorithm takes
®= Proving inherent complexity of problems
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“ALGORITHM” - DEFINITIONS

= A precise statement to solve a problem on a computer
= A sequence of definite instructions to do a certain job
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REPRESENTING AN ALGORITHM

Pseudo-code consisting of:

= Variables and assignments

= Data Structures (Arrays, objects, etc.)
= Loops

= |f ElIse/Switch/Case

®" Function/Procedure
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EXAMPLE 1: INSERTION SORT

Given: An array A of h nhumbers
Purpose: To sort the array

Algorithm:
for j =1 to n-1
key = A[]]
// A[Jj] 1s added in the sorted sequence A[0..7j-1]
i=3-1
while i >= @ and A [i] > key
A[i + 1] = A[i]
i=1-1
A[i + 1] = key
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EXAMPLE 2: EUCLID’S ALGORITHM

= Best case running time gcd(n,m) {

= Worst case running time r = n%m

= Average case running time if r==0return m
/] else

return gcd(m, r)

}

Fresh in the market,
Cutting edge material!
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EXAMPLE 3: BINARY SEARCH

binarySearch(A[©0..N-1], value, low, high)
{
if (high < low)
return -1 // not found
mid = (low + high) / 2
if (A[mid] > value)
return BinarySearch(A, value, low, mid-1)
else if (A[mid] < value)
return BinarySearch(A, value, mid+1, high)
else return mid // found

¥
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ANALYZING AN ALGORITHM

= How long will the algorithm take?
= How much memory will it require?

For Example:
function sum (array a) {

sum = 0;

for (int j : a) A
sum = sum + J

}

return sum;
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ANALYZING AN ALGORITHM

= Why to do it?
A priori estimation of performance
To compare algorithms on a level playing field
= How to do it? (What is the model?)
Random access memory model
Math operations take constant time
Read/write operations take constant time
= What do we compute?
Time complexity: # of operations as a function of input size
Space complexity: # of bits used
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ANALYZING ALGORITHMS

How to Analyze a Given Algorithm (Program)

Some tips:

= When analyzing an if then else condition, consider the arm
that takes the longest time

= When considering a loop, take the sum
= When considering a nested loop, ...
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WHAT IS THE TIME COMPLEXITY OF THIS

PROGRAM?
j=1 for (int j =1 to n) { for (int j =1 to n) {
while (3 < n) { for (int k = j to n) { k = 3

k = 2 x = k while (k < n) {
while (k < n) { while (x < n) { sum += alk]*b[k]
Sum += a[j]*b[k] sum += k += log n
k = k * k aljl*b[k]*c[x] }
} If (x %3 ==0) { }
J++ X=n+1
} }
X =X+ 1
}
}
}
O(n log log n)
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REQUIRED MATH CONSTRUCTS

m Sets, functions

= Logs and Exponents

Taking log to the base 2 or the base 10 of random numbers (without
using a calculator)

= Recurrence Relations
= Sums of series
Arithmetic Progression: 1 +2 + 3+ ... + n
Geometric Progress: 1 + 3 + 9 + ... 3K
AGP: 1+ 2.3 +3.9+ .. (k+1) 3k
Others: 12 + 22 + 32 + .. + n2, Harmonic Series
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ASYMPTOTIC NOTATION

= Big O notation

f(n) = O(g(n)) if there exist constants ny, and ¢ such that f(n) < c g(n)
for all n 2 n,,.

For example, consider f(n) = n, and g(n) = n2. Then, f(n) = 0(g(n))
If f(n) =ap,n®°+a;nt+..+a,nm,
then f(n) = 0 (n™)
= Big Omega notation

f(n) = Q(g(n)) if there exist constants n, and c such that f(n) 2 ¢ g(n)
for all n 2 n,,.
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ASYMPTOTIC NOTATIONS (conrT.)

= Small o notation
f(n) = o(g(n)) if for any constant ¢ > O, there exists ny such that O <
f(n) < c g(n) for all n 2 n,,.
For example, n = o(n?)
= Small omega (o) notation

f(n) = o(g(n)) if for any constant ¢ > O, there exists ny such that f(n) 2
c g(n) 2 0, for all n 2 n,

For example, n3 = o(n?)
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ASYMPTOTIC NOTATIONS (conrT.)

® f(n) = O(g(n)) if and only if g(n) = Q(f(n))
= If f(n) = O(g(n)) and g(n) = O(f(n)), then f(n) = B(g(n))
= f(n) = o(g(n)) if and only if g(n) = o(f(n))
= f(n) = o(g(n)) implies lim,_,_f(n)/g(n) =0
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PROVING SMALL OH USING L'HOPITAL'S

RULE

= [n some cases, we need to use the L'Hopital’s rule to prove
the small oh notation. L'Hopital’'s rule states that assuming
certain conditions hold, | f&® _, f@

m —— = lim
F—C g(j;} T gf(g;}

= For example, suppose we want to prove the following:
(log n)3 + 3 (log n)2 = o(Vn)

= We can find the limit of these functions as follows:
lim,_,.(log n)3 + 3 (log n)2/ Vn
=lim,.,,.6 (log n)2+ 12 log n / n%/2 // Using L'Hopital’s rule
=lim, .24 log n + 24/ n1/2 // Using L'Hopital’s rule
=lim, .48/ n%/?2 // Using L'Hopital’s rule
=0
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ASYMPTOTIC NOTATIONS (conrT.)

Analogy with real numbers

I\
VAN
Il
Vv
\4
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ASYMPTOTIC NOTATIONS (conrT.)

Which properties apply to which (of
5) asymptotic notations?

= Transitivity
= Reflexivity
= Symmetry
" Transpose Symmetry
=" Trichotomy

Algorithms Introduction and Asymptotic Notation 21



ASYMPTOTIC NOTATIONS (conrT.)

Which properties apply to which (of
5) asymptotic notations?
® Transitivity: O, o, ©, ®, Q
= Reflexivity: 0O, ®, Q
= Symmetry: ®
" Transpose Symmetry: (O with Q, o with o)

=" Trichotomy: Does not hold. For real numbers x
and y, we can always say that either x <y or x =
y or X > y. For functions, we may not be able to
say that. For example, if f(n) = sin(n) and
g(n)=cos(n)
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LOGISTICS

= Rigor required by this class

= Saturday study sessions (Optional)

= Study sessions on other days - You need to coordinate

= Grading - Review course information sheet in Blackboard

Algorithms Introduction and Asymptotic Notation 23



= Review Project P1

= Review Course Outline
= Lecture 2 - | will begin the slides at Graph (~slide 19)
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HOMEWORK ASSIGNMENTS

= Via Blackboard
= Due one week from when they are given
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HELPFUL LINKS
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http://en.wikipedia.org/wiki/Arithmetic_progression
http://en.wikipedia.org/wiki/Arithmetic_progression
http://en.wikipedia.org/wiki/Geometric_series
http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
https://www.youtube.com/watch?v=PdSzruR5OeE
https://www.youtube.com/watch?v=50BuWtYyPk8
https://www.youtube.com/watch?v=PdSzruR5OeE
https://www.youtube.com/watch?v=PdSzruR5OeE

SOME LESSONS FROM PREVIOUS CLASSES

= Almost no correlation between grades and background

= Correlation between grades and number of classes attended
= Correlation between grades and time spent on course

= Strong correlation between grades and homeworks/projects
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80% of
SUCCESS IS
showing up!

Algorithms
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