- f THE GFORGE
b | WASHINGTON
h | UNIVERSITY

INTRODUCTION AND
ASYMPTOTIC NOTATION

CS 6212 - Design and Analysis
of Algorithms




CLASS & TEACHING STYLE

= Active Class
Frequent 1-3 minute discussion sessions
Talking/discussing/explaining concepts helps

= Programming Projects
Code style matters, long methods, variable naming, all are subject to
criticism

" Frequent HWs and Quizzes
No makeup for anything missed

Do not hesitate to interrupt!
® Teaching Style (Criticism ©)
| may not always give direct answers

Algorithms Introduction and Asymptotic Notation 2



LOGISTICS

® [nstructor
Prof. Amrinder Arora

Please copy TA on emails
Please feel free to call as well
©

= Available for study sessions
Science and Engineering Hall
GWU

Algorithms Introduction and Asymptotic Notation 3


mailto:amrinder@gwu.edu

Algorithms

COURSE OUTLINE

Algorithms

Analysis

Design

r

“

Applications

Asymptotic

\.

NP-
Completeness

v,

r

~

D&C

N

s

DP

N

r

Greedy

~

r

Graph

~

B&B

Introduction and Asymptotic Notation



PURPOSE OF THIS CLASS

Desigh and Analysis of Algorithms

= Designing - Algorithmic Techniques
= Analyzing - how much time an algorithm takes
®= Proving inherent complexity of problems

Algorithms Introduction and Asymptotic Notation 5



“ALGORITHM” - DEFINITIONS

= A precise statement to solve a problem on a computer
= A sequence of definite instructions to do a certain job

Algorithms Introduction and Asymptotic Notation 6



REPRESENTING AN ALGORITHM

Pseudo-code consisting of:

= Variables and assignments

= Data Structures (Arrays, objects, etc.)
= Loops

= |f ElIse/Switch/Case

®" Function/Procedure

Algorithms Introduction and Asymptotic Notation 7



EXAMPLE 1: INSERTION SORT

Given: An array A of h nhumbers
Purpose: To sort the array

Algorithm:
for j =1 to n-1
key = A[]]
// A[Jj] 1s added in the sorted sequence A[0..7j-1]
i=3-1
while i >= @ and A [i] > key
A[i + 1] = A[i]
i=1-1
A[i + 1] = key

Algorithms Introduction and Asymptotic Notation 8



EXAMPLE 2: EUCLID’S ALGORITHM

= Best case running time gcd(n,m) {

= Worst case running time r = n%m

= Average case running time if r==0return m
/] else

return gcd(m, r)

}

Fresh in the market,
Cutting edge material!

Algorithms Introduction and Asymptotic Notation 9



EXAMPLE 3: BINARY SEARCH

binarySearch(A[©0..N-1], value, low, high)
{
if (high < low)
return -1 // not found
mid = (low + high) / 2
if (A[mid] > value)
return BinarySearch(A, value, low, mid-1)
else if (A[mid] < value)
return BinarySearch(A, value, mid+1, high)
else return mid // found

¥

Algorithms Introduction and Asymptotic Notation 10



ANALYZING AN ALGORITHM

= How long will the algorithm take?
= How much memory will it require?

For Example:
function sum (array a) {

sum = 0;

for (int j : a) A
sum = sum + J

}

return sum;

Algorithms Introduction and Asymptotic Notation 11



ANALYZING AN ALGORITHM

= Why to do it?
A priori estimation of performance
To compare algorithms on a level playing field
= How to do it? (What is the model?)
Random access memory model
Math operations take constant time
Read/write operations take constant time
= What do we compute?
Time complexity: # of operations as a function of input size
Space complexity: # of bits used

Algorithms Introduction and Asymptotic Notation 12



ANALYZING ALGORITHMS

How to Analyze a Given Algorithm (Program)

Some tips:

= When analyzing an if then else condition, consider the arm
that takes the longest time

= When considering a loop, take the sum
= When considering a nested loop, ...

Algorithms Introduction and Asymptotic Notation 13



WHAT IS THE TIME COMPLEXITY OF THIS

PROGRAM?
j=1 for (int j =1 to n) { for (int j =1 to n) {
while (3 < n) { for (int k = j to n) { k = 3

k = 2 x = k while (k < n) {
while (k < n) { while (x < n) { sum += alk]*b[k]
Sum += a[j]*b[k] sum += k += log n
k = k * k aljl*b[k]*c[x] }
} If (x %3 ==0) { }
J++ X=n+1
} }
X =X+ 1
}
}
}
O(n log log n)

Algorithms Introduction and Asymptotic Notation 14



REQUIRED MATH CONSTRUCTS

m Sets, functions

= Logs and Exponents

Taking log to the base 2 or the base 10 of random numbers (without
using a calculator)

= Recurrence Relations
= Sums of series
Arithmetic Progression: 1 +2 + 3+ ... + n
Geometric Progress: 1 + 3 + 9 + ... 3K
AGP: 1+ 2.3 +3.9+ .. (k+1) 3k
Others: 12 + 22 + 32 + .. + n2, Harmonic Series

Algorithms Introduction and Asymptotic Notation 15



ASYMPTOTIC NOTATION

= Big O notation

f(n) = O(g(n)) if there exist constants ny, and ¢ such that f(n) < c g(n)
for all n 2 n,,.

For example, consider f(n) = n, and g(n) = n2. Then, f(n) = 0(g(n))
If f(n) =ap,n®°+a;nt+..+a,nm,
then f(n) = 0 (n™)
= Big Omega notation

f(n) = Q(g(n)) if there exist constants n, and c such that f(n) 2 ¢ g(n)
for all n 2 n,,.

Algorithms Introduction and Asymptotic Notation 16



ASYMPTOTIC NOTATIONS (conrT.)

= Small o notation
f(n) = o(g(n)) if for any constant ¢ > O, there exists ny such that O <
f(n) < c g(n) for all n 2 n,,.
For example, n = o(n?)
= Small omega (o) notation

f(n) = o(g(n)) if for any constant ¢ > O, there exists ny such that f(n) 2
c g(n) 2 0, for all n 2 n,

For example, n3 = o(n?)

Algorithms Introduction and Asymptotic Notation 17



ASYMPTOTIC NOTATIONS (conrT.)

® f(n) = O(g(n)) if and only if g(n) = Q(f(n))
= If f(n) = O(g(n)) and g(n) = O(f(n)), then f(n) = B(g(n))
= f(n) = o(g(n)) if and only if g(n) = o(f(n))
= f(n) = o(g(n)) implies lim,_,_f(n)/g(n) =0

Algorithms Introduction and Asymptotic Notation 18



PROVING SMALL OH USING L'HOPITAL'S

RULE

= [n some cases, we need to use the L'Hopital’s rule to prove
the small oh notation. L'Hopital’'s rule states that assuming
certain conditions hold, | f&® _, f@

m —— = lim
F—C g(j;} T gf(g;}

= For example, suppose we want to prove the following:
(log n)3 + 3 (log n)2 = o(Vn)

= We can find the limit of these functions as follows:
lim,_,.(log n)3 + 3 (log n)2/ Vn
=lim,.,,.6 (log n)2+ 12 log n / n%/2 // Using L'Hopital’s rule
=lim, .24 log n + 24/ n1/2 // Using L'Hopital’s rule
=lim, .48/ n%/?2 // Using L'Hopital’s rule
=0

Algorithms Introduction and Asymptotic Notation 19



ASYMPTOTIC NOTATIONS (conrT.)

Analogy with real numbers

I\
VAN
Il
Vv
\4

Algorithms Introduction and Asymptotic Notation 20



ASYMPTOTIC NOTATIONS (conrT.)

Which properties apply to which (of
5) asymptotic notations?

= Transitivity
= Reflexivity
= Symmetry
" Transpose Symmetry
=" Trichotomy

Algorithms Introduction and Asymptotic Notation 21



ASYMPTOTIC NOTATIONS (conrT.)

Which properties apply to which (of
5) asymptotic notations?
® Transitivity: O, o, ©, ®, Q
= Reflexivity: 0O, ®, Q
= Symmetry: ®
" Transpose Symmetry: (O with Q, o with o)

=" Trichotomy: Does not hold. For real numbers x
and y, we can always say that either x <y or x =
y or X > y. For functions, we may not be able to
say that. For example, if f(n) = sin(n) and
g(n)=cos(n)

Algorithms Introduction and Asymptotic Notation 22



LOGISTICS

= Rigor required by this class

= Saturday study sessions (Optional)

= Study sessions on other days - You need to coordinate

= Grading - Review course information sheet in Blackboard

Algorithms Introduction and Asymptotic Notation 23



= Review Project P1

= Review Course Outline
= Lecture 2 - | will begin the slides at Graph (~slide 19)

Algorithms Introduction and Asymptotic Notation 24



HOMEWORK ASSIGNMENTS

= Via Blackboard
= Due one week from when they are given

Algorithms Introduction and Asymptotic Notation 25



HELPFUL LINKS

Algorithms Introduction and Asymptotic Notation 26


http://en.wikipedia.org/wiki/Arithmetic_progression
http://en.wikipedia.org/wiki/Arithmetic_progression
http://en.wikipedia.org/wiki/Geometric_series
http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
https://www.youtube.com/watch?v=PdSzruR5OeE
https://www.youtube.com/watch?v=50BuWtYyPk8
https://www.youtube.com/watch?v=PdSzruR5OeE
https://www.youtube.com/watch?v=PdSzruR5OeE

SOME LESSONS FROM PREVIOUS CLASSES

= Almost no correlation between grades and background

= Correlation between grades and number of classes attended
= Correlation between grades and time spent on course

= Strong correlation between grades and homeworks/projects

Algorithms Introduction and Asymptotic Notation 27



80% of
SUCCESS IS
showing up!

Algorithms



	Slide 1: Introduction and Asymptotic Notation 
	Slide 2: Class & TEACHING Style
	Slide 3: Logistics
	Slide 4: COURSE OUTLINE
	Slide 5: Purpose of this class
	Slide 6: “Algorithm” – Definitions
	Slide 7: Representing an Algorithm
	Slide 8: Example 1: Insertion Sort
	Slide 9: Example 2: Euclid’s algorithm
	Slide 10: Example 3: Binary Search
	Slide 11: Analyzing an Algorithm
	Slide 12: Analyzing an Algorithm
	Slide 13: Analyzing algorithms
	Slide 14: What is the Time Complexity of this Program?
	Slide 15: Required Math Constructs
	Slide 16: Asymptotic Notation
	Slide 17: Asymptotic Notations (Cont.)
	Slide 18: Asymptotic Notations (Cont.)
	Slide 19: Proving Small OH using L’HoPital’s rule
	Slide 20: Asymptotic Notations (Cont.)
	Slide 21: Asymptotic Notations (Cont.)
	Slide 22: Asymptotic Notations (Cont.)
	Slide 23: Logistics
	Slide 24: TO DOs
	Slide 25: Homework Assignments
	Slide 26: Helpful links
	Slide 27: Some lessons from previous classes
	Slide 28

