

INTRODUCTION AND ASYMPTOTIC NOTATION

CS 6212 – Design and Analysis of Algorithms

CLASS & TEACHING STYLE

Active Class

- Frequent 1-3 minute discussion sessions
- Talking/discussing/explaining concepts helps
- Programming Projects
 - Code style matters, long methods, variable naming, all are subject to criticism
- Frequent HWs and Quizzes
 - No makeup for anything missed
 - Do not hesitate to interrupt!
- Teaching Style (Criticism ^(C))
 - I may not always give direct answers

LOGISTICS

Instructor

Prof. Amrinder Arora <u>amrinder@gwu.edu</u> Please copy TA on emails Please feel free to call as well ☺

Available for study sessions
 Science and Engineering Hall
 GWU

COURSE OUTLINE

PURPOSE OF THIS CLASS

Design and Analysis of Algorithms

- Designing Algorithmic Techniques
- Analyzing how much time an algorithm takes
- Proving inherent complexity of problems

"ALGORITHM" - DEFINITIONS

A precise statement to solve a problem on a computer
A sequence of definite instructions to do a certain job

REPRESENTING AN ALGORITHM

Pseudo-code consisting of:

- Variables and assignments
- Data Structures (Arrays, objects, etc.)
- Loops
- If Else/Switch/Case
- Function/Procedure

EXAMPLE 1: INSERTION SORT

Given: An array A of n numbers Purpose: To sort the array

```
Algorithm:
for j = 1 to n-1
    key = A[j]
    // A[j] is added in the sorted sequence A[0..j-1]
    i = j - 1
    while i >= 0 and A [i] > key
        A[i + 1] = A[i]
        i = i - 1
        A[i + 1] = key
```

EXAMPLE 2: EUCLID'S ALGORITHM

- Best case running time
- Worst case running time
- Average case running time

gcd(n,m) { r = n%m if r == 0 return m

// else
return gcd(m, r)

Fresh in the market. Cutting edge material!

}

EXAMPLE 3: BINARY SEARCH

```
binarySearch(A[0...N-1], value, low, high)
{
 if (high < low)</pre>
     return -1 // not found
 mid = (low + high) / 2
 if (A[mid] > value)
     return BinarySearch(A, value, low, mid-1)
 else if (A[mid] < value)</pre>
     return BinarySearch(A, value, mid+1, high)
 else return mid
                        // found
}
```

ANALYZING AN ALGORITHM

- How long will the algorithm take?
- How much memory will it require?

```
For Example:
    function sum (array a) {
        sum = 0;
        for (int j : a) {
            sum = sum + j
        }
        return sum;
    }
```

ANALYZING AN ALGORITHM

Why to do it?

- A priori estimation of performance
- To compare algorithms on a level playing field
- How to do it? (What is the model?)
 - Random access memory model
 - Math operations take constant time
 - Read/write operations take constant time
- What do we compute?
 - Time complexity: # of operations as a function of input size
 - Space complexity: # of bits used

ANALYZING ALGORITHMS

How to Analyze a Given Algorithm (Program)

Some tips:

- When analyzing an if then else condition, consider the arm that takes the longest time
- When considering a loop, take the sum
- When considering a nested loop, ...

WHAT IS THE TIME COMPLEXITY OF THIS PROGRAM?

REQUIRED MATH CONSTRUCTS

Sets, functions

- Logs and Exponents
 - Taking log to the base 2 or the base 10 of random numbers (without using a calculator)

Recurrence Relations

- Sums of series
 - Arithmetic Progression: 1 + 2 + 3 + ... + n
 - Geometric Progress: 1 + 3 + 9 + ... 3^k
 - AGP: 1 + 2.3 + 3.9 + ... (k+1) 3^k
 - Others: $1^2 + 2^2 + 3^2 + ... + n^2$, Harmonic Series

ASYMPTOTIC NOTATION

- Big O notation
 - f(n) = O(g(n)) if there exist constants n₀ and c such that f(n) ≤ c g(n) for all n ≥ n₀.

For example, consider f(n) = n, and $g(n) = n^2$. Then, f(n) = O(g(n))

- If $f(n) = a_0 n^0 + a_1 n^1 + ... + a_m n^m$, then $f(n) = O(n^m)$
- Big Omega notation
 - f(n) = Ω(g(n)) if there exist constants n₀ and c such that f(n) ≥ c g(n) for all n ≥ n₀.

Small o notation

f(n) = o(g(n)) if for any constant c > 0, there exists n₀ such that 0 ≤ f(n) < c g(n) for all n ≥ n₀.

For example, $n = o(n^2)$

Small omega (0) notation

f(n) = ω(g(n)) if for any constant c > 0, there exists n₀ such that f(n) ≥ c g(n) ≥ 0, for all n ≥ n₀

For example, $n^3 = \omega(n^2)$

- f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$
- If f(n) = O(g(n)) and g(n) = O(f(n)), then $f(n) = \Theta(g(n))$
- f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$
- f(n) = o(g(n)) implies $\lim_{n\to\infty} f(n)/g(n) = 0$

PROVING SMALL OH USING L'HOPITAL'S RULE

- In some cases, we need to use the L'Hopital's rule to prove the small oh notation. L'Hopital's rule states that assuming certain conditions hold, $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$
- For example, suppose we want to prove the following: $(\log n)^3 + 3 (\log n)^2 = o(\sqrt{n})$
- We can find the limit of these functions as follows:
 $$\begin{split} \lim_{n\to\infty} (\log n)^3 + 3 \ (\log n)^2 / \sqrt{n} \\ &= \lim_{n\to\infty} 6 \ (\log n)^2 + 12 \ \log n / n^{1/2} \\ &= \lim_{n\to\infty} 24 \ \log n + 24 / n^{1/2} \\ &= \lim_{n\to\infty} 48 / n^{1/2} \\ &= 0 \end{split}$$

Analogy with real numbers

Which properties apply to which (of 5) asymptotic notations?

- Transitivity
- Reflexivity
- Symmetry
- Transpose Symmetry
- Trichotomy

Which properties apply to which (of 5) asymptotic notations?

- **Transitivity: O**, **o**, Θ , ω , Ω
- **Reflexivity:** $\mathbf{O}, \Theta, \Omega$
- **Symmetry:** Θ
- **Transpose Symmetry:** (O with Ω , o with ω)
- Trichotomy: Does not hold. For real numbers x and y, we can always say that either x < y or x = y or x > y. For functions, we may not be able to say that. For example, if f(n) = sin(n) and g(n)=cos(n)

LOGISTICS

- Rigor required by this class
- Saturday study sessions (Optional)
- Study sessions on other days You need to coordinate
- Grading Review course information sheet in Blackboard

TO DOS

- Review Project P1
- Review Course Outline
- Lecture 2 I will begin the slides at Graph (~slide 19)

HOMEWORK ASSIGNMENTS

- Via Blackboard
- Due one week from when they are given

HELPFUL LINKS

Core Concepts on Wikipedia

- http://en.wikipedia.org/wiki/Arithmetic_progression
- http://en.wikipedia.org/wiki/Geometric_series
- http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule

Videos

- Class Prelim video: https://www.youtube.com/watch?v=50BuWtYyPk8
- Limits and L'Hopitals Rule <u>https://www.youtube.com/watch?v=PdSzruR50eE</u>

SOME LESSONS FROM PREVIOUS CLASSES

- Almost no correlation between grades and background
- Correlation between grades and number of classes attended
- Correlation between grades and time spent on course
- Strong correlation between grades and homeworks/projects

80% of success is showing up!