
CS 6212 –

Design and

Analys is of

Algori thms

ASYMPTOTIC NOTATION

AND DATA STRUCTURES

 Instructor

Prof. Amrinder Arora

amrinder@gwu.edu

Please copy TA on emails

Please feel free to call as well

☺

 Available for study sessions

Science and Engineering Hall

GWU

Algorithms Asymptotic Notation and Data Structures 2

LOGISTICS

mailto:amrinder@gwu.edu

 Asymptotic Notation

▪ Big Oh

▪ Small Oh

▪ Big Omega

▪ Small Omega

▪ Theta

Algorithms Asymptotic Notation and Data Structures 3

RECAP

 Big O notation

▪ f(n) = O(g(n)) if there exist constants n0 and c such that f(n) ≤ c g(n) for all n ≥ n 0.

For example, n = O(2n) and 2n = O(n)

If f(n) = a0 n
0 + a1 n

1 + … + am n
m,

then f(n) = O (nm)

 Big Omega notat ion

▪ f(n) = Ω(g(n)) if there exist constants n 0 and c such that f(n) ≥ c g(n) for all n ≥ n 0.

 Smal l o notat ion

▪ f(n) = o(g(n)) if for any constant c > 0, there exists n0 such that 0 ≤ f(n) < c g(n)
for all n ≥ n0.

For example, n = o(n2)

 Smal l omega () notation

▪ f(n) = (g(n)) if for any constant c > 0, there exists n 0 such that f(n) ≥ c g(n) ≥ 0,
for all n ≥ n0

For example, n 3 = (n2)

 Theta ( or ) notation

▪ If f(n) = O(g(n)) and g(n) = O(f(n)), then f(n) = (g(n))

4

ASYMPTOTIC NOTATIONS

Algorithms Asymptotic Notation and Data Structures

 Transpose symmetry

▪ f(n) = O(g(n)) if and only if g(n) = Ω(f(n))

▪ f(n) = o(g(n)) if and only if g(n) = (f(n))

 Limit method

▪ f(n) = o(g(n)) implies limn→f(n)/g(n) = 0

▪ Using L’Hopital’s rule is common when using this method.

5

ASYMPTOTIC NOTATIONS (CONT.)

Algorithms Asymptotic Notation and Data Structures

O o   Ω

≤ < = > ≥

6

ASYMPTOTIC NOTATIONS (CONT.)

Analogy with real numbers

Algorithms Asymptotic Notation and Data Structures

Which properties apply to which (of

5) asymptotic notations?

 Transitivity

 Reflexivity

 Symmetry

 Transpose Symmetry

 Trichotomy

7

ASYMPTOTIC NOTATIONS (CONT.)

Algorithms Asymptotic Notation and Data Structures

Which properties apply to which (of

5) asymptotic notations?
 Transitivity: O, o, , , Ω

 Reflexivity: O, , Ω

 Symmetry: 

 Transpose Symmetry: (O with Ω, o with )

 Trichotomy: Does not hold. For real numbers x

and y, we can always say that either x < y or x =

y or x > y. For functions, we may not be able to

say that. For example if f(n) = sin(n) and

g(n)=cos(n)

8

ASYMPTOTIC NOTATIONS (CONT.)

Algorithms Asymptotic Notation and Data Structures

O o   Ω

≤ < = > ≥

Algorithms Asymptotic Notation and Data Structures 9

ASYMPTOTIC NOTATIONS (CONT.)

Analogy with real numbers

Question: Does it still not hold if we limit ourselves to

functions that are positive, always increasing with n, and

are not trigonometric?

Special Functions

 Polynomial vs. exponential

 Polynomial vs. logs

 Factorial / Combinatorial

 Trigonometric Functions

 Floors and Ceilings

Algorithms Asymptotic Notation and Data Structures 10

ASYMPTOTIC NOTATIONS (CONT.)

How do we prove that

2^n = omega (n^k)?

We want to prove that

for any given c, there

exists n0, such that

2^n > c * n^k, for all n

> n0.

 Divide and Conquer

 Greedy Method

 Dynamic Programming

 Graph search methods

 Backtracking

 Branch and bound

Algorithms Asymptotic Notation and Data Structures 11

DESIGNING AN ALGORITHM – TECHNIQUES

 Define the problem

 Find a working solution

 Fast enough?

 If not, you may have two options:

▪ Consider a different technique

▪ Consider a different data structure

 Iterate unti l satisfied.

Algorithms Asymptotic Notation and Data Structures 12

HOW TO DESIGN A FAST ALGORITHM?

 A data structure is a structure to hold the data, that al lows

several interesting operations to be performed on the data

set.

 The data structure is designed with those specific operations

in mind.

 General problem:

▪ Given a data set and the operations that need to be supported, come

up with a data structure (organization) that allows those operations

to be done in an efficient manner.

Algorithms Asymptotic Notation and Data Structures 13

DATA STRUCTURES

 Last In First Out (LIFO)

 Allows 3 operations:

▪ Push (a)

▪ Pop()

▪ Top()

Algorithms Asymptotic Notation and Data Structures 14

STACK

 Using an array

▪ Use an array S[1:N], and use a special pointer to the “top” of the

stack.

▪ When pushing something on the stack, increment the pointer

▪ When popping, decrement the pointer

 Using a linked list

▪ Use a special pointer to the “top” of the stack

▪ When pushing something on the stack, advance the “top” pointer

▪ When popping, move the “top” pointer back one step – this suggests

that the linked list must be a doubly linked list

Algorithms Asymptotic Notation and Data Structures 15

IMPLEMENTATION OF STACKS

 First In First Out (FIFO)

 Allows 2 operations:

▪ dequeue(): Returns the first element

▪ enqueue(a): Adds an element a to the end of the queue

Algorithms Asymptotic Notation and Data Structures 16

QUEUE

tail -> …… -> head

 Using an array

▪ Keep “head” and “tail” indexes

 Using a linked list

▪ Keep “head” and “tail” pointers

 Handling operations

▪ When enqueuing an item, move tail one step to the left.

▪ When dequeuing an item, move head one step to the left

Algorithms Asymptotic Notation and Data Structures 17

QUEUE – IMPLEMENTATION

 A record is a built-in structure data type, that allows the

packaging of several elements (called f ields)

 Every high level language allows the user to define

customized records.

▪ In C#/Java, this is called “class”.

▪ In C, this is called “struct”.

Algorithms Asymptotic Notation and Data Structures 18

RECORD STRUCT OBJECT CLASS

TEMPLATE

 Singly Linked

▪ A singly linked l ist is a sequence of records, where every record has a

field that points to the next record

▪ A special pointer called “first” has the reference to the first record

 Doubly Linked

▪ A doubly linked list is a sequence of records, where every record has

a field that points to the next record, and a field that points to the

previous record

▪ Special pointers called “first” and “last” with references to the first

and the last records

Algorithms Asymptotic Notation and Data Structures 19

LINKED LISTS

 Array vs. List

▪ Modify: Array does not allow structural changes

▪ Access a random element: Array allows random element access

Algorithms Asymptotic Notation and Data Structures 20

BASIC CONTENTION

 A graph G=(V,E) consists of a finite

set V, which is the set of ver tices,

and set E, which is the set of

edges. Each edge in E connects

two ver tices v1 and v2, which are

in V.

 Can be directed or undirected

Algorithms Asymptotic Notation and Data Structures 21

GRAPH

An example graph with n = 6, m = 5

 If (x,y) is an edge, then x is said to be adjacent to y, and y is adjacent
from x.

 In the case of undirected graphs , if (x,y) is an edge, we just say that x
and y are adjacent (or x is adjacent to y, or y is adjacent to x) . Also, we
say that x is the neighbor of y.

 The indegree of a node x is the number of nodes adjacent to x

 The outdegree of a node x is the number of nodes adjacent from x

 The degree of a node x in an undirected graph is the number of
neighbors of x

 A path from a node x to a node y in a graph is a sequence of node x,
x1 , x2, .. .,xn, y, such that x is adjacent to x1 , x1 is adjacent to x 2, . .. , and xn
is adjacent to y.

 The length of a path is the number of i ts edges .

 A cycle is a path that begins and ends at the same node

 The distance from node x to node y is the length of the shortest path
from x to y.

Algorithms Asymptotic Notation and Data Structures 22

GRAPH DEFINITIONS

Vertices, Edges and
Faces (n, m, f)

▪ n = 4, m = 5, f = 3

This graph is planar
(the graph can be laid
out on a plane such
that the edges don’t
cross each other)

Algorithms Asymptotic Notation and Data Structures 23

A GRAPH WITH N = 4, M = 5

 Using a matrix A[1 ..n,1 ..n] where A[i ,j] = 1 if (i ,j) is an edge,

and is 0 otherwise. This representation is called the

adjacency matrix representation. If the graph is undirected,

then the adjacency matrix is symmetric about the main

diagonal.

 Using an array Adj[1. .n] of pointers , which Adj[i] is a linked

l ist of nodes which are adjacent to i.

 The matrix representation requires more memory, since it has

a matrix cell for each possible edge, whether that edge exists

or not. In adjacency list representation, the space used is

directly proportional to the number of edges.

 If the graph is sparse (very few edges), then adjacency list

may be a more eff icient choice.

Algorithms Asymptotic Notation and Data Structures 24

GRAPH REPRESENTATIONS

 A tree is a connected acyclic graph (i.e., it has no cycles)

 Rooted tree: A tree in which one node is designated as a

root (the top node)

Algorithms Asymptotic Notation and Data Structures 25

TREE

Example:

Node A is root node

F and D are child nodes of A.

P and Q are child nodes of J.

Etc.

 Definitions

▪ Leaf is a node that has no children

▪ Ancestors of a node x are all the nodes on the path from x to the root,

including x and the root

▪ Subtree rooted at x is the tree consisting of x, its children and their

children, and so on and so forth all the way down

▪ Height of a tree is the maximum distance from the root to any node

Algorithms Asymptotic Notation and Data Structures 26

TREE

 A tree where every node has at most two children

 Binary Search Tree (BST): BST is a binary search tree where

every node contains a value, and for every node x, all the

nodes of the left subtree of x have values <= x, and all nodes

in the right subtree of x have values >= x.

 BST supports 3 operations: inser t(x), delete(x) and search(x)

 It is more interesting (and efficient) if the BST is “height

balanced”. Red Black and AVL trees are interesting

implementations of height balanced BSTs.

Algorithms Asymptotic Notation and Data Structures 27

BINARY TREE

 Array

▪ Search the array in O(log n) time. Sorted. Search, using binary
search.

▪ Modify the array (add or delete) → O(n) time

 Linked List

▪ Add or delete in O(1) time

▪ Search, will take O(n) time

 BSTs

▪ Add, delete, search, all in O(log n) time

 1 million operations, assume on average, n = 1 mil lion
▪ 30% are inserts/deletes/modifies, and 70% are searches

▪ How much time, does an array take?

▪ Linked List:

▪ BST:

Algorithms Asymptotic Notation and Data Structures 28

WHY BSTS ARE OF INTEREST

 Also known as priority queues

 Very ef ficient data structure to enforce priority, although do

not enforce complete sor ting

 Can be max heap or min heap

 Commonly represented using a heap tree (although, can also

be a forest)

Algorithms Asymptotic Notation and Data Structures 29

HEAPS

 Flexible data structure, where a node has a variable number

of children (say between 2 and 4, both including, or between

50 and 100 both including)

 This variable number allows us to leave some “holes” in the

tree to f il l as insertions happen, thereby allowing inser tions

without changing the structure of the tree entirely.

 The variable number also allows us to treat deletions without

changing the structure.

 2-3 tree is a specif ic kind of BTree where each node can have

2 or 3 children.

http://www.slideshare.net/amrinderarora/btrees -great-

alternative-to-red-black-avl-and-other-bsts

Algorithms Asymptotic Notation and Data Structures 30

BTREE, 2-3 TREE

http://www.slideshare.net/amrinderarora/btrees-great-alternative-to-red-black-avl-and-other-bsts
http://www.slideshare.net/amrinderarora/btrees-great-alternative-to-red-black-avl-and-other-bsts

[In a t ree , the number of leaf nodes are b^h. (Branching factor ^
height)]

 Motivation 1: Fi le System (DB) behaves di fferently from RAM
▪ Consider a scenario where you have 17 million records. In a binary tree,

the height would be log_2(17 million), that is, 25.

▪ A 25 height BST in the main memory / RAM is no problem at all.
▪ 25 x 1 nsec (assuming a slow 1 GHz processor).

▪ But, in database, we would need to go to 25 ”locations”
▪ 25 x 100 msec would be catastrophic (2.5 seconds!)

▪ For this reason, a Btree has a branching factor of 50/100 as needed as
opposed to BST’s branching factor (2).

 Motivation 2: Rearrangement
▪ Rearrangements in File System are very bad

▪ So, you need flexibility, and gaps.

Algorithms Asymptotic Notation and Data Structures 31

MOTIVATION OF BTREES

 Also called “Dis joint Set” data structure

 How to maintain sets dynamically – sets can be merged

(union), and we want to see which set a par ticular element is

in.

 find(x) → Identif ies the set that element x belongs to

 Union (S1, S2) → Combines these two sets

Algorithms Asymptotic Notation and Data Structures 32

UNION FIND

 Array

▪ A[i] → Group Name

 Merge (G1, G2) → G1

▪ Iterate the entire array

▪ Wherever you see G2, call it G1

 Step Complexities

▪ Find → O(1)

▪ Merge → O(n)

▪ N finds and m Merges → mn, n^2

Algorithms Asymptotic Notation and Data Structures 33

DISJOINT SETS WITHOUT UNION FIND

Each set is marked by a leader

When calling “find” on a set’s member, it

returns the leader

Leader maintains a rank (or height)

When doing a union, make the tree with

smaller height (or rank) to be a child of the

tree with the larger height

Note that this is NOT a binary tree.

Algorithms Asymptotic Notation and Data Structures 34

UNION FIND DATA STRUCTURE

 When doing a f ind, fol low that up by compressing the path to

the root, by making every node (along the way) point to the

root.

 This is not easy to prove, but Union Find with Path

compression, when starting with n nodes and m operations,

takes O(m log*(n)) t ime instead of O(m log n) t ime, where the

log* function is the iterated logarithm (also called the super

logarithm) and is an extremely slow growing function.

 log*(n) is defined as follows:

▪ 0, if n <= 1

▪ 1 + log*(log n) if n > 1

Algorithms Asymptotic Notation and Data Structures 35

UNION FIND – PATH COMPRESSION

Algorithms Asymptotic Notation and Data Structures 36

SOME PRACTICAL PROBLEMS

 Terrorism, insider trading, financial fraud analysis

▪ Are two people connected given millions of “x knows y” statements?

 Vulnerability Assessment

▪ Are two computers in a network connected?

 IC Design

▪ Are two points shot circuited on this mother board?

 Click Fraud Analysis, Page Ranking

▪ Are two web pages connected (indirectly)?

 Abstractions

▪ Given a graph, is there a path connecting one node to another?

▪ How can we organize a given universe of objects into sets?

Algorithms Asymptotic Notation and Data Structures 37

EXAMPLE

Algorithms Asymptotic Notation and Data Structures 38

EXAMPLE (CONT.)

 Divide and Conquer

▪ http://www.cs.cmu.edu/afs/cs/academic/class/15210-

f11/www/lectures/03/lecture03.pdf

▪ http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

 Recursive Algorithm

http://en.wikipedia.org/wiki/Recursion_(computer_science)

 Tail Recursion

http://en.wikipedia.org/wiki/Tail_call

 Recurrence Relations

http://en.wikipedia.org/wiki/Recurrence_relation

Algorithms Asymptotic Notation and Data Structures 39

READING ASSIGNMENT

http://www.cs.cmu.edu/afs/cs/academic/class/15210-f11/www/lectures/03/lecture03.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15210-f11/www/lectures/03/lecture03.pdf
http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://en.wikipedia.org/wiki/Recursion_(computer_science
http://en.wikipedia.org/wiki/Tail_call
http://en.wikipedia.org/wiki/Recurrence_relation

	Slide 1: Asymptotic Notation and Data Structures
	Slide 2: Logistics
	Slide 3: RECAP
	Slide 4: Asymptotic Notations
	Slide 5: Asymptotic Notations (Cont.)
	Slide 6: Asymptotic Notations (Cont.)
	Slide 7: Asymptotic Notations (Cont.)
	Slide 8: Asymptotic Notations (Cont.)
	Slide 9: Asymptotic Notations (Cont.)
	Slide 10: Asymptotic Notations (Cont.)
	Slide 11: Designing an Algorithm – Techniques
	Slide 12: How to design a fast algorithm?
	Slide 13: Data Structures
	Slide 14: Stack
	Slide 15: Implementation of Stacks
	Slide 16: Queue
	Slide 17: Queue – Implementation
	Slide 18: Record Struct Object Class Template
	Slide 19: Linked Lists
	Slide 20: Basic contention
	Slide 21: Graph
	Slide 22: Graph Definitions
	Slide 23: A graph with n = 4, m = 5
	Slide 24: Graph Representations
	Slide 25: Tree
	Slide 26: Tree
	Slide 27: Binary Tree
	Slide 28: Why BSTs are Of INTEREST
	Slide 29: Heaps
	Slide 30: Btree, 2-3 Tree
	Slide 31: Motivation of BTrees
	Slide 32: UNION FIND
	Slide 33: Disjoint sets without UNION find
	Slide 34: Union Find Data Structure
	Slide 35: Union find – Path compression
	Slide 36: Some PRACTICAL Problems
	Slide 37: Example
	Slide 38: EXAMPLE (cont.)
	Slide 39: READING Assignment

