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LOGISTICS
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 Asymptotic Notation

▪ Big Oh

▪ Small Oh

▪ Big Omega

▪ Small Omega

▪ Theta
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RECAP



 Big O notation

▪ f(n) = O(g(n))  if  there exist constants n0 and c such that f(n) ≤ c g(n) for all n ≥ n 0.

For example, n  = O(2n) and 2n = O(n)

If f(n) = a0 n
0 + a1 n

1 + … + am  n
m, 

then f(n)  = O (nm)

 Big Omega notat ion

▪ f(n) = Ω(g(n))  if  there exist constants n 0 and c such that f(n) ≥ c g(n) for all n ≥ n 0.

 Smal l o notat ion

▪ f(n) = o(g(n)) if for any constant c > 0,  there exists n0 such that 0 ≤ f(n) < c g(n) 
for all n  ≥ n0.

For example, n  = o(n2)

 Smal l omega ()  notation

▪ f(n) = (g(n))  if  for any constant c > 0, there exists n 0 such that f(n) ≥ c g(n) ≥ 0, 
for all n  ≥ n0

For example, n 3 = (n2)

 Theta  (  or  )  notation

▪ If f(n) = O(g(n)) and g(n)  = O( f(n)), then f(n) = (g(n))
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ASYMPTOTIC NOTATIONS
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 Transpose symmetry

▪ f(n) = O(g(n)) if and only if g(n) = Ω(f(n))

▪ f(n) = o(g(n)) if and only if g(n) = (f(n))

 Limit method

▪ f(n) = o(g(n)) implies limn→f(n)/g(n) = 0

▪ Using L’Hopital’s rule is common when using this method.
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ASYMPTOTIC NOTATIONS (CONT.)
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O o   Ω

≤ < = > ≥
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ASYMPTOTIC NOTATIONS (CONT.)

Analogy with real numbers
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Which properties apply to which (of 

5) asymptotic notations?

 Transitivity

 Reflexivity

 Symmetry

 Transpose Symmetry

 Trichotomy
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ASYMPTOTIC NOTATIONS (CONT.)
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Which properties apply to which (of 

5) asymptotic notations?
 Transitivity:   O, o, , , Ω

 Reflexivity:   O, , Ω

 Symmetry:   

 Transpose Symmetry: (O with Ω, o with )

 Trichotomy: Does not hold. For real numbers x 

and y, we can always say that either x < y or x = 

y or x > y.  For functions, we may not be able to 

say that.  For example if f(n) = sin(n) and 

g(n)=cos(n)
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ASYMPTOTIC NOTATIONS (CONT.)
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O o   Ω

≤ < = > ≥
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ASYMPTOTIC NOTATIONS (CONT.)

Analogy with real numbers

Question: Does it still not hold if we limit ourselves to 

functions that are positive, always increasing with n, and 

are not trigonometric?



Special Functions

 Polynomial vs. exponential

 Polynomial vs. logs

 Factorial / Combinatorial

 Trigonometric Functions

 Floors and Ceilings
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ASYMPTOTIC NOTATIONS (CONT.)

How do we prove that 

2^n = omega (n^k)?

We want to prove that 

for any given c, there 

exists n0, such that 

2^n > c * n^k, for all n 

> n0.



 Divide and Conquer

 Greedy Method

 Dynamic Programming

 Graph search methods

 Backtracking 

 Branch and bound
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DESIGNING AN ALGORITHM – TECHNIQUES



 Define the problem

 Find a working solution

 Fast enough?

 If  not, you may have two options:

▪ Consider a different technique

▪ Consider a different data structure

 Iterate unti l satisfied.
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HOW TO DESIGN A FAST ALGORITHM?



 A data structure is a structure to hold the data,  that al lows 

several interesting operations to be performed on the data 

set.

 The data structure is designed with those specific operations 

in mind.

 General problem:

▪ Given a data set and the operations that need to be supported, come 

up with a data structure (organization) that allows those operations 

to be done in an efficient manner.
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DATA STRUCTURES



 Last In First Out (LIFO)

 Allows 3 operations:

▪ Push (a)

▪ Pop()

▪ Top()
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STACK



 Using an array

▪ Use an array S[1:N], and use a special pointer to the “top” of the 

stack.

▪ When pushing something on the stack, increment the pointer

▪ When popping, decrement the pointer

 Using a linked list

▪ Use a special pointer to the “top” of the stack

▪ When pushing something on the stack, advance the “top” pointer

▪ When popping, move the “top” pointer back one step – this suggests 

that the linked list must be a doubly linked list

Algorithms Asymptotic Notation and Data Structures 15

IMPLEMENTATION OF STACKS



 First In First Out (FIFO)

 Allows 2 operations:

▪ dequeue(): Returns the first element

▪ enqueue(a): Adds an element a to the end of the queue
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QUEUE



tail -> …… -> head

 Using an array

▪ Keep “head” and “tail” indexes

 Using a linked list

▪ Keep “head” and “tail” pointers

 Handling operations

▪ When enqueuing an item, move tail one step to the left.

▪ When dequeuing an item, move head one step to the left
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QUEUE – IMPLEMENTATION



 A record is a built-in structure data type, that allows the 

packaging of several elements (called f ields)

 Every high level language allows the user to define 

customized records.

▪ In C#/Java, this is called “class”.

▪ In C, this is called “struct”.
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RECORD STRUCT OBJECT CLASS 

TEMPLATE



 Singly Linked

▪ A singly linked l ist is a sequence of records,  where every record has a 

field that points to the next record 

▪ A special pointer called “first” has the reference to the first record

 Doubly Linked

▪ A doubly linked list is a sequence of records, where every record has 

a field that points to the next record, and a field that points to the 

previous record

▪ Special pointers called “first” and “last” with references to the first 

and the last records
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LINKED LISTS



 Array vs.  List

▪ Modify: Array does not allow structural changes

▪ Access a random element:  Array allows random element access
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BASIC CONTENTION



 A graph G=(V,E) consists of a finite 

set V,  which is  the set of ver tices, 

and set E, which is  the set of 

edges.   Each edge in E connects 

two ver tices v1 and v2, which are 

in V.

 Can be directed or undirected
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GRAPH

An example graph with n = 6, m = 5



 If (x,y)  is an  edge, then x is said to be adjacent to y, and y is  adjacent  
from x. 

 In the case of undirected graphs , if  (x,y)  is an edge, we just say that x 
and y are adjacent (or  x is adjacent to y,  or  y is adjacent to x) .  Also, we 
say that x is the neighbor  of y.  

 The indegree of a node x is the number of nodes adjacent to x 

 The outdegree of a node x is the number of nodes adjacent from x 

 The degree of  a  node x in  an undirected graph is the number of 
neighbors of x 

 A path  from a node x to a  node y in  a  graph is a sequence of  node x,  
x1 , x2, .. .,xn, y,  such that  x is  adjacent  to x1 ,  x1 is adjacent to x 2,  . .. , and xn 
is adjacent to y.  

 The length of a  path  is the number of i ts edges . 

 A cycle is a path  that  begins and ends at the same node 

 The distance from node x to node y is the length of the shortest path 
from x to y.  
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GRAPH DEFINITIONS



Vertices, Edges and 
Faces (n, m, f)

▪ n = 4, m = 5, f = 3

This graph is planar 
(the graph can be laid 
out on a plane such 
that the edges don’t 
cross each other)
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A GRAPH WITH N = 4, M = 5



 Using a matrix A[1 ..n,1 ..n] where A[ i ,j] = 1 if (i ,j) is an edge, 

and is  0 otherwise.   This representation is  called the 

adjacency matrix representation.   If  the graph is undirected, 

then the adjacency matrix is symmetric about the main 

diagonal.

 Using an array Adj[1. .n] of pointers , which Adj[i] is a linked 

l ist of nodes which are adjacent to i.

 The matrix representation requires more memory, since it has 

a matrix cell  for each possible edge, whether that edge exists  

or not.  In adjacency list representation, the space used is 

directly proportional to the number of edges.

 If  the graph is sparse (very few edges), then adjacency list 

may be a more eff icient choice.
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GRAPH REPRESENTATIONS



 A tree is  a connected acyclic graph (i.e.,  it  has no cycles)

 Rooted tree: A tree in which one node is designated as a 

root (the top node)
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TREE

Example:

Node A is root node

F and D are child nodes of A.

P and Q are child nodes of J.

Etc.



 Definitions

▪ Leaf is a node that has no children

▪ Ancestors of a node x are all the nodes on the path from x to the root, 

including x and the root

▪ Subtree rooted at x is the tree consisting of x, its children and their 

children, and so on and so forth all the way down

▪ Height of a tree is the maximum distance from the root to any node
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TREE



 A tree where every node has at most two children

 Binary Search Tree (BST):  BST is a binary search tree where 

every node contains a value, and for every node x,  all  the 

nodes of the left subtree of x have values <= x, and all nodes 

in the right subtree of x have values >= x.

 BST supports 3 operations:  inser t(x), delete(x) and search(x)

 It  is more interesting (and efficient) if the BST is “height 

balanced”.  Red Black and AVL trees are interesting 

implementations of height balanced BSTs.
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BINARY TREE



 Array

▪ Search the array in O(log n) time.  Sorted.  Search, using binary 
search.

▪ Modify the array (add or delete) → O(n) time

 Linked List

▪ Add or delete in O(1) time

▪ Search, will  take O(n) time

 BSTs

▪ Add, delete, search, all in O(log n) time

 1 million operations, assume on average, n = 1 mil lion
▪ 30% are inserts/deletes/modifies, and 70% are searches

▪ How much time, does an array take?

▪ Linked List:  

▪ BST: 
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WHY BSTS ARE OF INTEREST



 Also known as priority queues

 Very ef ficient data structure to enforce priority,  although do 

not enforce complete sor ting

 Can be max heap or min heap

 Commonly represented using a heap tree (although, can also 

be a forest)
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HEAPS



 Flexible data structure,  where a node has a variable number 

of children (say between 2 and 4,  both including, or between 

50 and 100 both including)

 This variable number allows us to leave some “holes” in the 

tree to f il l as insertions happen, thereby allowing inser tions 

without changing the structure of the tree entirely.

 The variable number also allows us to treat deletions without 

changing the structure.

 2-3 tree is a specif ic kind of BTree where each node can have 

2 or 3 children.

http://www.slideshare.net/amrinderarora/btrees -great-

alternative-to-red-black-avl-and-other-bsts 
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BTREE, 2-3 TREE

http://www.slideshare.net/amrinderarora/btrees-great-alternative-to-red-black-avl-and-other-bsts
http://www.slideshare.net/amrinderarora/btrees-great-alternative-to-red-black-avl-and-other-bsts


[ In a t ree , the number of leaf nodes are b^h. (Branching  factor ^  
height) ]

 Motivation 1: Fi le System (DB) behaves di fferently from RAM
▪ Consider a scenario where you have 17 million records.  In a binary tree, 

the height would be log_2(17 million), that is, 25.

▪ A 25 height BST in the main memory / RAM is no problem at all.
▪ 25 x  1 nsec (assuming a slow 1 GHz processor).

▪ But, in database, we would need to go to 25 ”locations”
▪ 25 x  100 msec would be catastrophic  (2.5 seconds!)

▪ For this reason, a Btree has a branching factor of 50/100 as needed as 
opposed to BST’s branching factor (2).

 Motivation 2: Rearrangement
▪ Rearrangements in File System are very bad

▪ So, you need flexibility, and gaps.
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MOTIVATION OF BTREES



 Also called “Dis joint Set” data structure

 How to maintain sets dynamically – sets can be merged 

(union), and we want to see which set a par ticular element is 

in.

 find(x) → Identif ies the set that element x belongs to

 Union (S1, S2) → Combines these two sets
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UNION FIND



 Array

▪ A[i] → Group Name

 Merge (G1, G2) → G1

▪ Iterate the entire array

▪ Wherever you see G2, call it G1

 Step Complexities

▪ Find → O(1)

▪ Merge → O(n)

▪ N finds and m Merges → mn,   n^2
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DISJOINT SETS WITHOUT UNION FIND



Each set is marked by a leader

When calling “find” on a set’s member, it 

returns the leader

Leader maintains a rank (or height)

When doing a union, make the tree with 

smaller height (or rank) to be a child of the 

tree with the larger height

Note that this is NOT a binary tree.
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UNION FIND DATA STRUCTURE



 When doing a f ind, fol low that up by compressing the path to 

the root,  by making every node (along the way) point to the 

root.

 This is not easy to prove, but Union Find with Path 

compression, when starting with n nodes and m operations, 

takes O(m log*(n))  t ime instead of O(m log n) t ime, where the 

log*  function is the iterated logarithm (also called the super 

logarithm) and is  an extremely slow growing function.

 log*(n) is defined as follows:

▪ 0, if n <= 1

▪ 1 + log*(log n) if n > 1
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UNION FIND – PATH COMPRESSION
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SOME PRACTICAL PROBLEMS

 Terrorism, insider trading, financial fraud analysis

▪ Are two people connected given millions of “x knows y” statements?

 Vulnerability Assessment

▪ Are two computers in a network connected?

 IC Design

▪ Are two points shot circuited on this mother board?

 Click Fraud Analysis,  Page Ranking

▪ Are two web pages connected (indirectly)?

 Abstractions

▪ Given a graph, is there a path connecting one node to another?

▪ How can we organize a given universe of objects into sets?
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EXAMPLE
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EXAMPLE (CONT.)



 Divide and Conquer

▪ http://www.cs.cmu.edu/afs/cs/academic/class/15210-

f11/www/lectures/03/lecture03.pdf

▪ http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

 Recursive Algorithm

http://en.wikipedia.org/wiki/Recursion_(computer_science)

 Tail  Recursion

http://en.wikipedia.org/wiki/Tail_call

 Recurrence Relations

http://en.wikipedia.org/wiki/Recurrence_relation
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READING ASSIGNMENT

http://www.cs.cmu.edu/afs/cs/academic/class/15210-f11/www/lectures/03/lecture03.pdf
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http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://en.wikipedia.org/wiki/Recursion_(computer_science
http://en.wikipedia.org/wiki/Tail_call
http://en.wikipedia.org/wiki/Recurrence_relation
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