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WHERE WE ARE



 A technique to solve complex problems by breaking into 

smaller instances of the problem and combining the results

▪ Recursive methodology – Smaller instances of the same type of 

problem 

 Typically used accompaniments

▪ Induction for proving correctness

▪ Recurrence relation solving for computing time (and/or space) 

complexity
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DIVIDE AND CONQUER



By definition: For D&C, sub 

problems must be of same 

type.

 [The phrase “D&C” is also used 

in other contexts.   It  may refer 

to breaking down a task, but in 

Computer Science, D&C is a 

formal paradigm]
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D&C – CS, NOT MANAGEMENT/POLITICS



 A recursive algorithm is an algorithm that calls itself on 

smaller input.

 Algorithm sor t (Array a)

 Begin

   sort (subarray consisting of first half of a)

   sort (subarray consisting of second half of a)

   do_something_else();

 End
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RECURSION



 Recurrence Relation is a recursive formula, commonly used to 

analyze the time complexity of recursive algorithms

 For example

▪ T(n) = T(n/2) + T(n/2) + n2

▪ T(n) = a T(n/b) + f(n)

 Note: Recurrence Relations have uses outside of t ime 

complexity analysis as well  (for example in combinatorics),  

but for the purpose of this lecture, this is the main use case.
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RECURRENCE RELATIONS



 Wikipedia says: “…it is often necessary to replace the original 

problem by a more general or complicated problem in order to 

get the recursion going, and there is no systematic method for 

finding the proper generalization.”

▪ Refer to this as the “generalization” step

▪ Sometimes counterintuitive that making a “generalization”, that is, 

making the problem harder actually helps in solving it!
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HOW TO D&C



d ivid e_conquer(i np ut  J )

{

  // Base C ase

 if  ( si ze of  inp ut  i s sm all  enough ) {

  solve  di rect ly and  retu rn

 }

  // Divi de Step

 d ivid e J  into o ne or mor e p ar ts J1 ,  J2 , . . .

  // Recurs ive Ca lls

 ca ll  d ivid e_conquer(J1 ) to get a sub so lut io n S1

 ca ll  d ivid e_conquer(J2 ) to get a sub so lut io n S2

 . . .

  // Merge Step

 Mer ge the  sub so lut io ns  S1 , S2,. . . in to a glob al so lut io n S

 retu rn S

}

Algorithms Divide and Conquer - Part I 9

GENERAL TEMPLATE



divide_ conquer ( input  J  (of  s ize  n))

{

  // Base Case

 i f ( n <= 2)  {

  sol ve direct ly  an d  return // A ssume this  ta kes  a constan t am ount of  t im e

 }

  // Div ide Step

 di vide J  into 3 par ts:  J1 of  s ize  n/2 J2 of  si ze  n/3 and J3 of  si ze n/4

  // Recurs iv e Cal ls

 call  di vide_ conquer ( J1) to  get  a subsolut ion S1

 call  di vide_ conquer ( J2) to  get  a subsolut ion S2

 call  di vide_ conquer ( J3) to  get  a subsolut ion S3

  // Merge Step

 Merge the subsolut ions S1,  S2, S3 into a g lobal  solut ion S

    // Assume thi s takes  a cons tant amount of t ime

 return S

}
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GENERATE THE RECURRENCE FOR THIS 

ALGORITHM..



 Number of subproblems that you create in the “divide” step

 This plays a role in the recurrence relation that is created for 

analysis

▪ T(n) = a T(n/b) + f(n)

Here “a” branches, each with size “n/b”, and f(n) time spent in 

dividing and merging

▪ Example: T(n) = T(n/2) + 1

1 branch, size half and constant time spent in dividing and merging
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NUMBER OF BRANCHES



d ivid e_conquer(i np ut  J )

{

 // Base C ase

 if  ( si ze of  inp ut  i s sm all  enough ) {

  solve  di rect ly and  retu rn

 }

  // Divi de Step

 d ivid e J  into two or m ore  pa r ts  J1 ,  J2, . . .

    // Recurs ive Ca lls

 ca ll  d ivid e_conquer(J1 ) to get a sub so lut io n S1

 ca ll  d ivid e_conquer(J2 ) to get a sub so lut io n S2

 . . .

  // Merge Step

 Mer ge the  sub so lut io ns  S1 , S2,. . . in to a glob al so lut io n S

 retu rn S

}
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GENERAL TEMPLATE –  TIME COMPLEXITY 

VIEW

Combined time 

in steps other 

than recursive 

calls: f(n)

a recursive calls of size 

n/b each.  Total time:

a T(n/b)



 Binary Search

 Merge Sort

 Quick Sort
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D&C – EXAMPLE ALGORITHMS



 Search (A,  low, high,  key)

▪ Mid = (low + high) / 2

▪ Compare A[mid] to key, and look either in left half or in right half

 T(n) = T(n/2) + 1

 T(n) = O(log n)
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BINARY SEARCH



 Cl assi c  pro blem : G iv en an  array,  to so rt  i t

 Gene raliza t ion  s tep : G iv en an  array  a nd  in dexes  i  a nd  j (s tar t  a nd  en d)  to  
sort  tha t  po rt i on  of  i t

 Algori thm Merge Sort  ( i np ut :  A , i , j )  {
         // Ba se Ca se
 i f  ( j  –  i  <  THRESHOLD)  {
     Insert io nSo rt (A , i , j )
            Retu rn

  }
 

  // Div ide port ion

  in t k= ( i+ j)/ 2

            // Recurs iv e Cal ls
 Merge Sort (A , i ,k)
 Merge Sort (A ,k+ 1 ,j)

            // Merge Call s
 Merge (A,i , k, k+1 , j)

 }
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MERGE SORT



 How to merge two lists  effectively?
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MERGING



 T(n) = 2T(n/2) + (n)

 Need some methods for solving such recurrence equations

▪ Substitution method

▪ Recursion tree method (unfolding)

▪ Master theorem

 T(n) = (n log n)
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TIME COMPLEXITY OF MERGE SORT



 T(n) = T(n/2) + 1  

 T(n) = T(n/2) + n

 T(n) = 2T(n/2) + 1

 T(n) = 2T(n/2) + n

 T(n) = 3T(n/2) + n

 T(n) = 3T(n/2) + n log n

 T(n) = T(sqrt(n)) + 1 

// Base Case is usually T(1) = 1,

// You can use any T(a) = b, where a and b are both specific 

numbers,  such as T(100) = 2.
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EXAMPLES OF RECURRENCE RELATIONS



 Examples:

▪ T(n) = 2 T(n/2) + cn

  T(n) = O (n log n)

▪ T(n) = T(n/2) + n

  T(n) = O (n)

 3 General Approaches:

▪ Recursion tree method (unfold and reach a pattern)

▪ Substitution method (Guess and Prove)

▪ Master theorem
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SOLVING RECURRENCE RELATIONS



 Given T(n) = T(n/2) + n

 Then T(n) = T(n/2) + n

    = T(n/4) + n/2 + n

    = T(n/8) + n/4 + n/2 + n

   = . .
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UNFOLDING METHOD



 Given T(n) = 2T(n/2) + n^2

 Then T(n) = 2T(n/2) + n^2

    = 2^2 T(n/4) + n^2/2^2 + n^2

   = . .
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UNFOLDING METHOD



 Given T(n) = 2 T(n/2) + cn

 We first “guess” that the solution is O(n log n)

 To prove this using induction, we first assume T(m) <= km log 

m for al l m < n

 Then T(n) = 2 T(n/2) + cn

<= 2 kn/2 log (n/2) + cn

= kn log n – (k – c)n         // log (n/2) = log n – 1

<= k n log n, as long as k >= c
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SUBSTITUTION METHOD FOR MERGE SORT



 Given T(n) = 11 T(n/10) + 5n

 We first “guess” that the solution is O(n log n)

 To prove this using induction, we first assume:

T(m) <= 100 m log m for all  m < n

 Then T(n) = 11 T(n/10) + 5n

<= 11 100 (n/10) log (n/10) + 5n

….

<= 110 n log n

….

<= 110 n log n

= O(n log n)
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SUBSTITUTION METHOD FOR MERGE SORT

INCORRECT CONCLUSION!!!

Must prove the algebraic 

inequality, before drawing 

any asymptotic conclusion!
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MASTER THEOREM FOR SOLVING 

RECURRENCE RELATIONS

Only applies  to Recurrence Relations of fo llowing type 
 
 T(n) = a  T(n/b)  + f(n)

For example, MT does not apply S(n) = S(n/2) + S(n/3) + f(n)

 Case 1. I f f(n)  = O(nc) where c < logb a ,  then T(n) = θ(n^logb a )

f(n) is POLYNOMIALLY smaller than n^logb a

 Case 2.  I f it  is  true,  for some constant k ≥ 0, that f(n)  = θ (nc logk 

n ) where c = logb a ,  then T(n) = θ(nc logk+1 n )

▪ f(n) is POLYNOMIALLY equal to n^logb a

 Case 3.  I f it  is  true that f(n)  = Ω (nc)  where  c > logb a ,  then T(n) = 
θ ( f(n))

▪ f(n) is POLYNOMIALLY larger than n^logb a



T(n) = a T(n/b) + f(n)

➔T(n/b) = a T(n/b^2) + f(n/b)

➔T(n) = a [a T(n/b^2) + f(n/b)] + f(n)

➔T(n) = a^2 T(n/b^2) + a f(n/b) + f(n)

…

If we unfold this k times, we get an expression l ike:

 T(n) = ak T(n/bk) + f(n) + a f(n/b) + … + ak f(n/bk)

Then, for k ≈ logbn, T(n/bk) will be a small constant, and we can 
assume T(n/bk) = 1.

Then, T(n) = a^(logbn) + f(n) + af(n/b) + … + ak f(n/bk)

   = n^(logba) + f(n) + af(n/b) + … + ak f(n/bk)

We note that there are about logbn terms.
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MASTER THEOREM – INTUITION 



T(n) = n^(logba) + f(n) + af(n/b) + … + ak f (n/bk)

We observe that:

• If f(n) is very small, say a constant, then the first term dominates

• If f(n) =  (n^(logba)), then the T(n) = f(n) log n.

// The log n factor ar ises because there are ~ log n terms

• If f(n) is too large, then f(n) terms dominate
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MASTER THEOREM – INTUITION (CONT.) 



T(n) = 2 T(n/2) + c n

In this case:

• a = b = 2

• f(n) = c n

• logba = 1

• n^(logba) = n

So, f(n) =  (n^(logba))

Therefore,  by Master Theorem,

 T(n) = (f(n) log n)

That is, T(n) = (n log n)
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APPLYING MASTER THEOREM TO MERGE 

SORT RECURRENCE



T(n) = 3 T(n/2) + n

In this case:

• a = 3, b = 2

• f(n) = n

• logba = log2 3.  

• 2^x = 3.  

• 2^1 < 3.    and 2^2 > 3. 

• 1 < log_2 (3) < 2

• f(n) is O of n^ log2 3

• By MT: T(n) = n^ log2 3.     Case 1
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APPLYING MASTER THEOREM TO OTHER



T(n) = 5 T(n/2) + n3
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APPLYING MASTER THEOREM TO OTHER



T(n) = 5 T(n/2) + n3

In this case:

• a = 5

• b = 2 

• f(n) = n3

• Which term is larger? f(n) or n^log_b(a)

• T(n) = n3   // By Case 3
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APPLYING MASTER THEOREM TO OTHER



 T(n) = 5 T(n/2) + n3

▪ T(n) = n3

 T(n) = 5 T(n/2) + n2

▪ T(n) = n log
2

5

 T(n) = 5 T(n/2) + n2 log n

▪ T(n) = n log
2

5

 T(n) = 5 T(n/2) + n3 log n

▪ T(n) = n3 log n
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PRACTICE QUESTIONS



T(n) = T(n/2) + f(n) (Binary Search)

T(n) = log n

====================== 

T(n) = T(n/6) + logk n

In this case:

• a = 1, b = 6

• f(n) = logk n

• logba = 0

• n^(logba) = n^0

So, f(n) =  (n^(logba))

Therefore,  by Master Theorem (Case 2),

 T(n) = (f(n) log n)

That is, T(n) = (logk+1 n)
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PRACTICE QUESTIONS (CASE 2)

T(n) = T(n/6) + log 
logk n

In this case:

• a = 1, b = 6

• f(n) = logk n

• logba = 0

• n^(logba) = n^0

Master Theorem 
(Case 2),

 T(n) = (f(n) log 
n)

That is, T(n) = 
(log n log logk 
n)



T(n) = 2 T(n/2) + c n log n

In this case:

• a = b = 2

• f(n) = c n log n

• logba = 1

• n^(logba) = n

So, f(n) =  (n^(logba))

Therefore,  by Master Theorem,

 T(n) = (f(n) log n)

That is, T(n) = (n log^2 n)
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APPLYING MASTER THEOREM TO ANOTHER 

RECURRENCE RELATION



 Select a “par tition” element

 Partition the array into “left” and “right” portions (not 

necessarily equal) based on the partit ion element

 Sort the left and right sides

 An inver ted view of mergesor t – spend time upfront 

(partit ion), no need to merge later.
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QUICKSORT



 quicksor t(A,p,r)

 i f (p < r) {

 q = par tition (A,p,r)

 quicksort(A,p,q-1)

 quicksor t(A,q+1,r)

}
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QUICKSORT – THE PSEUDO CODE



 Invented in 1960 by C. A.  R. Hoare

 More widely used than any other sor t

 A well-studied, not diff icult to implement algorithm

 R. Sedgewick – 1975  Ph.D. thesis at Stanford Univ. – 

Analysis and Variations of QuickSort

Algorithms Divide and Conquer - Part I 36

QUICKSORT (THE TRIVIA CLUB VIEW)

Who said: “Elementary, My Dear Watson”?



 “There are two ways of constructing a software design: One 

way is to make it so simple that there are obviously no 

deficiencies, and the other way is to make it so complicated 

that there are no obvious deficiencies. The first method is far 

more difficult.”

 “We should forget about small  efficiencies,  say about 97% of 

the time: premature optimization is  the root of all  evi l.”
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QUOTES, QUOTES



 -23, 100, 1 , 3, 5,  18, 0,  31, 102, 34

 Partition element: -23

 []. -23  [100, 1 , 3, 5,  18, 0,  31, 102, 34]

 -23, 100, 1 , 3, 5,  18, 0,  31, 102, 34

 Partition element: 5

 [-23, 1, 3, 0].  5 [100, 18, 31 , 102, 34]
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EXAMPLE RUN



 23, 100, 1 , 3, 5,  18, 0,  31, 102, 34, 21, 28, 51, 90, 4

 Partition element: 18

 [4,0, 1,  3, 5]  18 [100, 31, 102, 34, 21, 28, 51, 90, 23]
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EXAMPLE PARTITION RUN



 How to f ind a good partit ion element

 How to partit ion (efficiently)

 Partition array so that:

▪ Some partitioning element (q) is its final position

▪ Every element smaller than q is to the left of q

▪ Every element larger than q is to the right of q

 Sedgwick states that “improving QuickSort is the better 

mousetrap of computer science”
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CENTRAL PROBLEM IN QUICKSORT



 T(n) = T(n1) + T(n2) + O(n)

Where n1 + n2 = n – 1

 So it al l depends upon the kind of the split , and split  wil l 

l ikely not be the same each time.

 Worst case – very bad split:  O(n2)

 Best case – good split:  O(n log n)

 Average case – where does that fit?

http://mathworld.wolfram.com/Quicksort.html
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QUICKSORT – TIME COMPLEXITY ANALYSIS

http://mathworld.wolfram.com/Quicksort.html


How long will the  algor ithm take?

 function sum ( integer  a) {

 if (a == 1) exit;

   if (a is odd) {

      a = 3a + 1

   } else {

      a = a/2

   }

}

 Tri chotomy –  Extended

 Given two funct ions f(n) and g(n) , both strictl y increasing  with n, 
is  it poss ible that f(n) and g(n)  cannot be compared 
asymptotically?
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OPEN QUESTIONS



1. Median Finding 

(Textbook § 4.6)

2. Closest pair of 

points algorithm 

(Textbook § 4.7)

3. Strassen’s  

algorithm for 

matrix 

multiplication 

(Textbook § 4.8)
https ://youtu.be/1A Ivli zGo7Y
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READING ASSIGNMENTS

We already have quite a few people who know 
how to divide.  So essentially, we are now 

looking for people who know how to conquer.

https://youtu.be/1AIvlizGo7Y
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WHERE WE ARE



More D&C 

in Next 

Lecture
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