
Design and

Analys is of

Algori thms

DIVIDE AND CONQUER

PART II

CLOSEST PAIR OF POINTS

MEDIAN FINDING

SELECTION ALGORITHMS

 Instructor

Prof. Amrinder Arora

amrinder@gwu.edu

Please copy TA on emails

Please feel free to call as well

☺

 Available for study sessions

Science and Engineering Hall

GWU

Algorithms Divide and Conquer - Part II 2

LOGISTICS

mailto:amrinder@gwu.edu

Algorithms

Analysis

Asymptotic

NP-
Completeness

Design

D&C

DP

Greedy

Graph

B&B

Applications

Algorithms Divide and Conquer - Part II 3

WHERE WE ARE

 A technique to solve complex problems by breaking into

smaller instances of the problem and combining the results

▪ Recursive methodology – Smaller instances of the same type of

problem

 Typically used with:

▪ Principle of Mathematical Induction – For proving correctness

▪ Recurrence relation solving – For computing time (and/or space)

complexity

Algorithms Divide and Conquer - Part II 4

DIVIDE AND CONQUER

 Generalization step: Given an array and indexes i and j (start
and end) to sor t that portion of it

 Algorithm MergeSort (input: A,i ,j) {
 i f input size is small, solve differently and return
 int k=(i+j)/2
 MergeSort(A,i ,k)
 MergeSort(A,k+1,j)
 Merge(A,i,k,k+1,j)

 }

• T(n) = 2T(n/2) + n

• T(n) = O(n log n)

[Discussed in previous lectures.]

Algorithms Divide and Conquer - Part II 5

MERGESORT

 quicksor t(A,p,r)

 i f (p < r) {

 q = par tition (A,p,r)

 quicksort(A,p,q-1)

 quicksor t(A,q+1,r)

}

• Time complexity = ?

[Discussed in previous lectures.]

Algorithms Divide and Conquer - Part II 6

QUICKSORT

 Given an array of unsorted numbers, how to find the median?

 Option 1: Sor t and return a[n/2]

 That takes O(n log n) t ime. Is there a more efficient

algorithm?

Algorithms Divide and Conquer - Part II 7

MEDIAN FINDING

 Step 1: Generalize the problem

 Selection (A, k): Returns k-th smallest element in given array.

For example:

▪ Selection (A,1) = Smallest

▪ Selection(A,n) = Largest // n is the array size.

▪ Selection(A,n/2) = Median

 Selection algorithms:

http://en.wikipedia.org/wiki/Selection_algorithm

 Also known as order statistic.

 Generalization of largest, smallest, median, etc. problems.

 This generalization step is very important for recursive calls!

Algorithms Divide and Conquer - Part II 8

MEDIAN FINDING

http://en.wikipedia.org/wiki/Selection_algorithm

Selection (A,k)
Partition the array A

Suppose, the partition element lands at location k’
If (k == k’) {
 return x // Great, we really got lucky.
}
If (k < k’) {
 return Selection (A’,k) // Recursive call. Discard A”
}
If (k > k’) {
 return Selection (A”,k-k’) // Recursive call. Discard A’
}

Algorithms Divide and Conquer - Part II 9

SELECTION – GENERAL TEMPLATE

 Selection(A, 5)

 A = [3, 5, 90, 4, 8, 1, 6, 11, 9, 10, 100]

 Random partition element = 6

 [A1 P A2]

 [3, 5, 4, 1, 6, 100, 10, 9, 11, 8, 90]

 [Location of element 6] = 5 = k’ = k

 Return 6! (We are lucky)

Algorithms Divide and Conquer - Part II 10

EXAMPLE PARTITION

 Selection(A, 8)

 A = [3, 5, 90, 4, 8, 1, 6, 11, 9, 10, 100]

 Random partition element = 6

 [A1 P A2]

 [3, 5, 4, 1, 6, 100, 10, 9, 11, 8, 90]

 [Location of element 6] = 5 = k’ < (k = 8)

 Therefore, the Selection (A,8), must be in the Array A2.

 Selection (A,8) = Selection (A2, 8 – 5)

▪ Now need to make a (recursive) call for Selection (A2,3)

▪ [Because 5 elements were eliminated in the highlighted portion of

the array]

Algorithms Divide and Conquer - Part II 11

EXAMPLE PARTITION

 Selection(A, 2)

 A = [3, 5, 90, 4, 8, 1, 6, 11, 9, 10, 100]

 Random partition element = 6

 [A1 P A2]

 [3, 5, 4, 1, 6, 100, 10, 9, 11, 8, 90]

 [Location of element 6] = 5 = k’ > (k = 2)

 Therefore, the Selection (A,2), must be in the Array A1.

 Selection (A,8) = Selection (A1, 2)

▪ [Because elements were eliminated from the “right” side of the array]

Algorithms Divide and Conquer - Part II 12

EXAMPLE PARTITION

 The main complication (as in case of Quicksor t) is to f ind a

good partit ion. If the partit ion is very uneven, the algorithm

may not be ef ficient.

 We have two good choices:

▪ Use probability to find a good partition by trying repeatedly

▪ Find a good partition deterministically

 In the coming few slides, we explore both of these methods.

Algorithms Divide and Conquer - Part II 13

SELECTION – TWO APPROACHES

 Part ition randomly.

 Define: A “good” parti tion is something that lands between the
middle half, that i s between ¼ and ¾ of the array.

 You can find a “good” partition with probabili ty ½

 Expected number of t imes that you have to do a partition until

you get a “good” partition = 2

 Suppose the good partition “lands” at location k ’, where n/4 <=
k ’ <= 3n/4

 Depending upon value of k and k ’, we make the appropriate
recursive call, as speci fied in general template.

 Af ter partition, we remove at least 25% of the array.

 T(n) <= 2n + T(0.75 n) // 2 re flects the expected # of times
that we have to do the part ition

 T(n) <= cn // Using substitution method

 Therefore , T(n) = O(n)

Algorithms Divide and Conquer - Part II 14

SELECTION – PROBABILISTIC METHOD

 T(n) = 2 n + T(3n/4)

 a = 1

 b = 4/3

 f(n) = 2n

 log b (a) = 0

 n^0 = 1

 f(n) term dominates

 T(n) = f(n) = n

Algorithms Divide and Conquer - Part II 15

SOLVING RECURRENCE RELATIONS

 Divide the array of size n into groups of 5 (or 7)

 Sort the small groups

 Find the median of the medians

 Partition the array on that median

 x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x

Algorithms Divide and Conquer - Part II 16

SELECTION – QUICKSELECT ALGORITHM

 Say x = the median of median

 Then at least 30% of elements are <= x

 At least 30% of elements are >= x

 We use this x to be the par tition element

 Suppose x “lands” at location k’ , where 3n/10 <= k’ <= 7n/10

 Depending upon value of k and k’, we make the appropriate
recursive call , as specif ied in general template.

 Depending upon the value of k, either the left side of the
partit ion or the right side will be discarded. In either case, we
eliminate at least 30% of data.

 We note that there are 2 recursive calls – 1st call to find the
median of medians, and 2nd call after removing 25% of
elements

Algorithms Divide and Conquer - Part II 17

QUICKSELECT (CONT.)

 T(n) = cn + T(n/5) + T(7n/10)

 Proof that T(n) is l inear, that is O(n), by substitution method

(Using Principle of Mathematical Induction)

We claim that T(n) <= 10 cn for al l values of n < N

T(N/5) <= 2cN

T(7N/10) <= 7cN

→ T(N) <= cN + 2cN + 7cN = 10cN

 → The inequality holds for N

→ By principle of mathematical induction, inequality holds for

al l values of n.

 Therefore, T(n) = O(n)

Algorithms Divide and Conquer - Part II 18

QUICKSELECT – ANALYSIS

 Given n points on the plane, find the closest pair of points.

 http://en.wikipedia.org/wiki/Closest_pair_of_points_problem

 Textbook section 4.7

Algorithms Divide and Conquer - Part II 19

DIVIDE AND CONQUER – ANOTHER

APPLICATION

http://en.wikipedia.org/wiki/Closest_pair_of_points_problem

 Naïve algorithm requires O(n2) time – simply compute all

distances and find the minimum.

 We are interested in a divide and conquer approach.

 We remember that there is a s ignificant difference between

O(n2) time algorithm and O(n log n) t ime algorithm. For

example, latter can easily be run with a tril lion points, the

O(n2) algorithm, not so much.

Algorithms Divide and Conquer - Part II 20

CLOSEST PAIR OF POINTS

 Divide and Conquer approach:

1. Split the set of points into two equal -sized subsets by finding the

median of the x-dimensions of the points.

2. Solve the problem recursively for subsets to the left and right

subsets. Thus, there are two recursive calls.

3. Find the minimal distance among the pair of points in which one

point lies on the left of the dividing vertical and the second point

lies to the right.

 T(n) = cn + 2T(n/2) + f(n), where:

▪ cn represents the time spent in Step 1 (linear time median finding)

▪ 2T(n/2) is time spent in two recursive calls in Step 2.

▪ f(n) is the time spent in step 3, that is, time to find the minimum

distance among the pairs, where one point lies to the left of the

dividing vertical, and the second point lies to the right.

Algorithms Divide and Conquer - Part II 21

CLOSEST PAIR OF POINTS (CONT.)

 T(n) = 2T(n/2) + cn + f(n)

▪ If f(n) = O(n2), then, T(n) = O(n2)

▪ If f(n) = O(n), then T(n) = O(n log n)

 Main complication then is to bound f(n)

 If we can do f(n) in linear time, we wil l have an O(n log n) time

algorithm.

 In the next couple of s lides, we discuss indeed how this can

be done in l inear time.

Algorithms Divide and Conquer - Part II 22

CLOSEST PAIR OF POINTS (CONT.)

 We define:

▪ 1 = Minimum distance found in the left side

▪ 2 = Minimum distance found in the right side

▪  = Minimum of 1 and 2

 Firstly, we are only interested in the points that are within a

distance  of the dividing vertical.

 For a point p1 on the left side of the dividing ver tical, we are

only interested in:

▪ Points that are on the right side of the vertical, and within a distance

 from the dividing vertical

▪ Points that are within a vertical distance  from the point p1.

Algorithms Divide and Conquer - Part II 23

CLOSEST PAIR OF POINTS (CONT.)

Algorithms Divide and Conquer - Part II 24

CLOSEST PAIR OF POINTS (CONT.)

 Thus for a point p1, there can only be 6 points of interest for

that point.

 Even if there are n/2 points to the left of the dividing ver tical

and within a distance , sti ll that only means 3n pairs to

consider

 Therefore, f(n) = O(n)

 Therefore, T(n) = 2T(n/2) + O(n)

 Therefore, T(n) = O(n log n)

Algorithms Divide and Conquer - Part II 25

CLOSEST PAIR OF POINTS (CONT.)

 Considering there are so few points in the middle vertical bar,

i f we can do the merging part in less than l inear time, for

example in O(n^0.75) time, that may be very interesting.

 Hypothetically, then T(n) = 2T(n/2) + O(n^0.75)

 Then, we can have T(n) = O(n) // Linear time

 Might that be possible? How can we get there? (Or if not, why

not?)

Algorithms Divide and Conquer - Part II 26

CLOSEST PAIR OF POINTS (CONT.)

 D&C – An interesting technique for solving problems

 Three different ways to solve recurrence relations

▪ Unfolding method

▪ Substitution (guess and prove method)

▪ Master Theorem – Another Method for solving Recurrence Relations

 QuickSelect – O(n) t ime algorithm for selecting k-th largest

element in an unsorted array.

▪ The constant is rather large, use this algorithm with caution

 Closest pair of points – An interesting O(n log n) t ime

recursive algorithm for finding the closest pair of points.

Algorithms Divide and Conquer - Part II 27

SUMMARY AND WRAP UP

Algorithms

Analysis

Asymptotic

NP-
Completeness

Design

D&C

DP

Greedy

Graph

B&B

Applications

Algorithms Divide and Conquer - Part II 28

WHERE WE ARE

 Strassen’s algorithm for matrix multiplication (Textbook § 4.8)

 Greedy Algorithms ((Textbook § 5.1 – 5.4)

 Section 4.2 in

http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/no

tes/04-greedy.pdf

Algorithms Divide and Conquer - Part II 29

READING ASSIGNMENTS

http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/04-greedy.pdf
http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/04-greedy.pdf

	Slide 1: Divide and Conquer PART II closest pair of points median finding selection algorithms
	Slide 2: Logistics
	Slide 3: Where we are
	Slide 4: Divide and Conquer
	Slide 5: MergeSort
	Slide 6: Quicksort
	Slide 7: Median finding
	Slide 8: Median Finding
	Slide 9: Selection – General template
	Slide 10: Example partition
	Slide 11: Example partition
	Slide 12: Example partition
	Slide 13: Selection – Two approaches
	Slide 14: selection – PROBABILISTIC METHOD
	Slide 15: Solving Recurrence relatiOns
	Slide 16: Selection – QuickSelect Algorithm
	Slide 17: Quickselect (cont.)
	Slide 18: QuickSelect – Analysis
	Slide 19: Divide and Conquer – Another Application
	Slide 20: Closest pair of points
	Slide 21: Closest pair of points (cont.)
	Slide 22: Closest pair of Points (cont.)
	Slide 23: Closest pair of Points (cont.)
	Slide 24: Closest pair of points (cont.)
	Slide 25: Closest pair of points (cont.)
	Slide 26: Closest pair of points (cont.)
	Slide 27: Summary and Wrap Up
	Slide 28: Where we are
	Slide 29: Reading Assignments

