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WHERE WE ARE



 A technique to solve complex problems by breaking into 

smaller instances of the problem and combining the results

▪ Recursive methodology – Smaller instances of the same type of 

problem 

 Typically used with:

▪ Principle of Mathematical Induction – For proving correctness

▪ Recurrence relation solving – For computing time (and/or space) 

complexity
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DIVIDE AND CONQUER



 Generalization step: Given an array and indexes i and j (start 
and end)  to sor t that portion of it

 Algorithm MergeSort (input: A,i ,j) {
 i f input size is small,  solve differently and return
 int k=(i+j)/2
 MergeSort(A,i ,k)
 MergeSort(A,k+1,j)
 Merge(A,i,k,k+1,j)

 }

• T(n) = 2T(n/2) + n

• T(n) = O(n log n)

[Discussed in previous lectures.]
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MERGESORT



 quicksor t(A,p,r)

 i f (p < r) {

 q = par tition (A,p,r)

 quicksort(A,p,q-1)

 quicksor t(A,q+1,r)

}

• Time complexity = ?

[Discussed in previous lectures.]
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QUICKSORT



 Given an array of unsorted numbers,  how to find the median?

 Option 1: Sor t and return a[n/2]

 That takes O(n log n) t ime.  Is there a more efficient 

algorithm?
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MEDIAN FINDING 



 Step 1:  Generalize the problem

 Selection (A,  k):  Returns k-th smallest element in given array.   

For example:

▪ Selection (A,1) = Smallest

▪ Selection(A,n) = Largest // n is the array size.

▪ Selection(A,n/2) = Median 

 Selection algorithms: 

http://en.wikipedia.org/wiki/Selection_algorithm

 Also known as order statistic.

 Generalization of largest, smallest,  median, etc.  problems.

 This generalization step is very important for recursive calls!
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MEDIAN FINDING

http://en.wikipedia.org/wiki/Selection_algorithm


Selection (A,k)
Partition the array A

Suppose, the partition element lands at location k’
If (k == k’) {
 return x      // Great, we really got lucky.
}
If (k < k’) {
 return Selection (A’,k)  // Recursive call.  Discard A”
}
If (k > k’) {
 return Selection (A”,k-k’) // Recursive call.  Discard A’
} 
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SELECTION – GENERAL TEMPLATE



 Selection(A, 5)

 A = [3, 5,  90, 4, 8, 1, 6, 11, 9, 10, 100]

 Random partition element = 6

 [A1  P  A2]

 [3, 5, 4,  1, 6,  100, 10, 9, 11, 8, 90]

 [Location of element 6] = 5 = k’ = k

 Return 6!   (We are lucky)
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EXAMPLE PARTITION



 Selection(A, 8)

 A = [3, 5,  90, 4, 8, 1, 6, 11, 9, 10, 100]

 Random partition element = 6

 [A1  P  A2]

 [3, 5, 4,  1, 6,  100, 10, 9, 11, 8, 90]

 [Location of element 6] = 5 = k’ < (k = 8)

 Therefore,  the Selection (A,8),  must be in the Array A2.

 Selection (A,8) = Selection (A2,  8 – 5)

▪ Now need to make a (recursive) call for Selection (A2,3)

▪ [Because 5 elements were eliminated in the highlighted portion of 

the array]
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EXAMPLE PARTITION



 Selection(A, 2)

 A = [3, 5,  90, 4, 8, 1, 6, 11, 9, 10, 100]

 Random partition element = 6

 [A1  P  A2]

 [3, 5, 4,  1, 6,  100, 10, 9, 11, 8, 90]

 [Location of element 6] = 5 = k’ > (k = 2)

 Therefore,  the Selection (A,2),  must be in the Array A1.

 Selection (A,8) = Selection (A1, 2)

▪ [Because elements were eliminated from the “right” side of the array]
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EXAMPLE PARTITION



 The main complication (as in case of Quicksor t) is to f ind a 

good partit ion.   If  the partit ion is  very uneven, the algorithm 

may not be ef ficient.

 We have two good choices:

▪ Use probability to find a good partition by trying repeatedly

▪ Find a good partition deterministically

 In the coming few slides,  we explore both of these methods.
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SELECTION – TWO APPROACHES



 Part ition randomly.

 Define: A “good”  parti tion is  something that lands between the  
middle half, that i s between ¼ and ¾ of the array. 

 You can find a “good” partition with probabili ty ½ 

 Expected number of t imes that  you have  to do a partition until  

you get  a “good” partition = 2

 Suppose  the good partition “lands” at location k ’, where n/4 <= 
k ’ <= 3n/4

 Depending upon value of k  and k ’, we make the appropriate 
recursive call, as  speci fied in general template.

 Af ter partition,  we  remove at least  25% of the array.

 T(n)  <= 2n + T(0.75 n) // 2 re flects the expected # of times 
that we have  to do the part ition

 T(n)  <= cn   // Using substitution method

 Therefore , T(n)  = O(n)
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SELECTION – PROBABILISTIC METHOD



 T(n) = 2 n + T(3n/4)

 a = 1

 b = 4/3

 f(n) = 2n

 log b (a) = 0

 n^0 = 1

 f(n) term dominates

 T(n) = f(n) = n
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SOLVING RECURRENCE RELATIONS



 Divide the array of size n into groups of 5 (or 7)

 Sort the small  groups

 Find the median of the medians

 Partition the array on that median

 x x x x x . .. .. .. ..   x x x x x

x x x x x . .. .. .. ..   x x x x x

x x x x x . .. . . .. ..   x x x x x

x x x x x . .. .. .. ..   x x x x x

x x x x x . .. .. .. ..   x x x x x
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SELECTION – QUICKSELECT ALGORITHM



 Say x = the median of median

 Then at least 30% of elements are <= x

 At least 30% of elements are >= x

 We use this  x to be the par tition element

 Suppose x “lands” at location k’ , where 3n/10 <= k’  <= 7n/10

 Depending upon value of k and k’,  we make the appropriate 
recursive call , as specif ied in general template.

 Depending upon the value of k,  either the left side of the 
partit ion or the right side will  be discarded.  In either case, we 
eliminate at least 30% of data.

 We note that there are 2 recursive calls – 1st call  to find the 
median of medians, and 2nd call  after removing 25% of 
elements
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QUICKSELECT (CONT.)



 T(n) = cn + T(n/5) + T(7n/10)

 Proof that T(n) is l inear, that is O(n),  by substitution method 

(Using Principle of Mathematical Induction)

We claim that T(n) <= 10 cn for al l values of n < N

T(N/5) <= 2cN

T(7N/10) <= 7cN

→ T(N) <= cN + 2cN + 7cN = 10cN

 → The inequality holds for N

→ By principle of mathematical induction, inequality holds for 

al l values of n.

 Therefore,  T(n) = O(n)
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QUICKSELECT – ANALYSIS



 Given n points on the plane, find the closest pair of points.

 http://en.wikipedia.org/wiki/Closest_pair_of_points_problem

 Textbook section 4.7
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DIVIDE AND CONQUER – ANOTHER 

APPLICATION

http://en.wikipedia.org/wiki/Closest_pair_of_points_problem


 Naïve algorithm requires O(n2) time – simply compute all  

distances and find the minimum.

 We are interested in a divide and conquer approach.

 We remember that there is a s ignificant difference between 

O(n2) time algorithm and O(n log n) t ime algorithm.  For 

example, latter can easily be run with a tril lion points,  the 

O(n2) algorithm, not so much.
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CLOSEST PAIR OF POINTS



 Divide and Conquer approach:

1. Split the set of points into two equal -sized subsets by finding the 

median of the x-dimensions of the points.

2. Solve the problem recursively for subsets to the left and right 

subsets.  Thus, there are two recursive calls.

3. Find the minimal distance among the pair of points in which one 

point lies on the left of the dividing vertical and the second point 

lies to the right.

 T(n) = cn + 2T(n/2) + f(n),  where:

▪ cn represents the time spent in Step 1 (linear time median finding)

▪ 2T(n/2) is time spent in two recursive calls in Step 2.

▪ f(n) is the time spent in step 3, that is, time to find the minimum 

distance among the pairs,  where one point lies to the left of the 

dividing vertical,  and the second point lies to the right.
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CLOSEST PAIR OF POINTS (CONT.)



 T(n) = 2T(n/2) + cn + f(n)

▪ If f(n) = O(n2),  then, T(n) = O(n2)

▪ If f(n) = O(n), then T(n) = O(n log n)

 Main complication then is to bound f(n)

 If  we can do f(n) in linear time, we wil l have an O(n log n) time 

algorithm.

 In the next couple of s lides,  we discuss indeed how this can 

be done in l inear time.
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CLOSEST PAIR OF POINTS (CONT.)



 We define:

▪ 1 = Minimum distance found in the left side

▪ 2 = Minimum distance found in the right side

▪  = Minimum of 1 and 2

 Firstly,  we are only interested in the points that are within a 

distance  of the dividing vertical.

 For a point p1 on the left side of the dividing ver tical,  we are 

only interested in:

▪ Points that are on the right side of the vertical, and within a distance 

 from the dividing vertical

▪ Points that are within a vertical distance  from the point p1.
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CLOSEST PAIR OF POINTS (CONT.)
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CLOSEST PAIR OF POINTS (CONT.)



 Thus for a point p1,  there can only be 6 points of interest for 

that point.

 Even if there are n/2 points to the left of the dividing ver tical 

and within a distance ,  sti ll  that only means 3n pairs to 

consider

 Therefore,  f(n) = O(n)

 Therefore,  T(n) = 2T(n/2) + O(n)

 Therefore,  T(n) = O(n log n)

Algorithms Divide and Conquer - Part II 25

CLOSEST PAIR OF POINTS (CONT.)



 Considering there are so few points  in the middle vertical bar, 

i f we can do the merging part in less than l inear time, for 

example in O(n^0.75) time, that may be very interesting.

 Hypothetically,  then T(n) = 2T(n/2) + O(n^0.75)

 Then, we can have T(n) = O(n) // Linear time

 Might that be possible? How can we get there? (Or if not,  why 

not?)
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CLOSEST PAIR OF POINTS (CONT.)



 D&C – An interesting technique for solving problems

 Three different ways to solve recurrence relations

▪ Unfolding method

▪ Substitution (guess and prove method)

▪ Master Theorem – Another Method for solving Recurrence Relations

 QuickSelect – O(n) t ime algorithm for selecting k-th largest 

element in an unsorted array.

▪ The constant is rather large, use this algorithm with caution

 Closest pair of points – An interesting O(n log n) t ime 

recursive algorithm for finding the closest pair of points.
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SUMMARY AND WRAP UP
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WHERE WE ARE



 Strassen’s  algorithm for matrix multiplication (Textbook § 4.8)

 Greedy Algorithms ((Textbook § 5.1 – 5.4)

 Section 4.2 in 

http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/no

tes/04-greedy.pdf
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READING ASSIGNMENTS

http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/04-greedy.pdf
http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/04-greedy.pdf

	Slide 1: Divide and Conquer  PART II  closest pair of points median finding selection algorithms
	Slide 2: Logistics
	Slide 3: Where we are
	Slide 4: Divide and Conquer
	Slide 5: MergeSort
	Slide 6: Quicksort
	Slide 7: Median finding 
	Slide 8: Median Finding
	Slide 9: Selection – General template
	Slide 10: Example partition
	Slide 11: Example partition
	Slide 12: Example partition
	Slide 13: Selection – Two approaches
	Slide 14: selection – PROBABILISTIC METHOD
	Slide 15: Solving Recurrence relatiOns
	Slide 16: Selection – QuickSelect Algorithm
	Slide 17: Quickselect (cont.)
	Slide 18: QuickSelect – Analysis
	Slide 19: Divide and Conquer – Another Application
	Slide 20: Closest pair of points
	Slide 21: Closest pair of points (cont.)
	Slide 22: Closest pair of Points (cont.)
	Slide 23: Closest pair of Points (cont.)
	Slide 24: Closest pair of points (cont.)
	Slide 25: Closest pair of points (cont.)
	Slide 26: Closest pair of points (cont.)
	Slide 27: Summary and Wrap Up
	Slide 28: Where we are
	Slide 29: Reading Assignments

