
Design and

Analysis of

Algorithms
GREEDY ALGORITHMS
KRUSKAL’S ALGORITHM USING UNION FIND

MINIMUM SPANNING TREE

GREEDY ALGORITHMS AND MATROIDS

 Instructor

Prof. Amrinder Arora

amrinder@gwu.edu

Please copy TA on emails

Please feel free to call as well

☺

 Available for study sessions

Science and Engineering Hall

GWU

Algorithms Greedy Algorithms 2

LOGISTICS

mailto:amrinder@gwu.edu

CS 6212

Analysis

Asymptotic

NP-
Completeness

Design

D&C

Greedy

DP

Graph

B&B

Applications

Algorithms Greedy Algorithms 3

WHERE WE ARE

✓ Done

✓ Done

❖ Starting today..

 A technique to build a complete solution by making a

sequence of “best selection” steps

 Selection depends upon actual problem

 Focus is simply on “what is best step from this point”

Algorithms Greedy Algorithms 4

GREEDY METHOD

 Applications of greedy method are very broad.

 Examples:

▪ Sorting

▪ Merging sorted lists

▪ Knapsack

▪ Minimum Spanning Tree (MST)

▪ Hoffman Encoding

Algorithms Greedy Algorithms 5

APPLICATIONS

 Select the minimum element

 Move it to the beginning

 Continue doing it for the remaining array

Given array a[1..n] of unsorted numbers

 For i = 1 to n-1

▪ For j = i+1 to n

▪ If (a[i] > a[j]) swap (a[i], a[j])

Algorithms Greedy Algorithms 6

SORTING USING GREEDY METHOD

 1, 5, 4, 19, 2, 90, 3

 Objective: To sort the array

 1, 2, 4, 3, 5, 19, 90

 ================

Algorithms Greedy Algorithms 7

INSERTION SORT, EXAMPLE RUN..

 How long does it take to sort using greedy method?

 Is it optimal?

Algorithms Greedy Algorithms 8

TIME COMPLEXITY ANALYSIS

 Input: n sorted arrays of lengths

L[1], L[2],...,L[n]

 Problem: To merge all the arrays into one array as

fast as possible. Which pair to merge every time?

 We observe that:

▪ The final list will be a list of length L[1] + L[2] + … + L[n]

▪ The final list will be same regardless of the sequence in which

we merge lists

▪ However, the time taken may not be the same.

Algorithms Greedy Algorithms 9

MERGING SORTED LISTS

 List 1 of size 7: {1, 2, 5, 21, 23, 44, 64}

 List 2 of size 12: {1, 4, 15, 16, 17, 19, 34, 38, 56,

63, 69, 89}

 Merged list of size 19 (in time 19):

 {1, 1, 2, 4, 5, 15, 16, 17, 19, 21, 23, 34, 38, 44, 56,

63, 64, 69, 89}

 You can actually prove that merging can take up to

n1 + n2 – 1 in the worst case. O(n1 + n2) time.

Algorithms Greedy Algorithms 10

MERGING TWO LISTS

 5 Lists of sizes: 20M, 25M, 30M, 35M, 40M

 Finally, when it is merged, we will have ONE list of size
150M.

Option 1: ((((1, 5), 3), 2), 4)

 20 with 40 ➔ 60 (in 60 units of time)

 60 with 30 ➔ 90 (in 90 units)

 {25, 35, 90}

 25 with 90 ➔ 115 (in 115 units of time)

 115 with 35 ➔ 150 (in 150 units of time)

 Total time = 60 + 90 + 115 + 150 = 415M units of t ime

 Optimal: 45 + 65 + 85 + 150 = 345M

Algorithms Greedy Algorithms 11

EXAMPLE

 Greedy method: Merge the two shortest remaining

arrays.

 To Implement, we can keep a data structure, that

allows us to:

▪ Remove the two smallest arrays

▪ Add a larger array

▪ Keep doing this until we have one array

Algorithms Greedy Algorithms 12

MERGING SORTED LISTS

¡ Greedy method: Merge the two shortest remaining

arrays.

¡ To Implement, we can keep a data structure, that

allows us to:

§ Remove the two smallest arrays

§ Add a larger array

§ Keep doing this until we have one array

Algorithms Greedy Algorithms 9

MERGING SORTED LISTS

 Implement using heap

 Build the original heap – O(n) time

 For i = 1 to n-1

▪ Remove two smallest elements: 2 log (n)

▪ Add a new element log(n) time

 Total time: O(n log n)

▪ Here n is the number of sorted lists. n has NOTHING to do with

the number of elements in any of the lists – that is entirely

outside of our knowledge, we are only given the relative sizes

of the lists.

Algorithms Greedy Algorithms 13

MERGING SORTED LISTS

 Input: A weight capacity C, and n items of weights W[1:n] and

monetary value V[1:n].

 Problem: Determine which items to take and how much of

each item so that the total weight is ≤ C, and the total value

(profit) is maximized.

 Formulation of the problem: Let x[i] be the fraction taken

from item i. 0 ≤ x[i] ≤ 1.

The weight of the par t taken from item i is x[i]*W[i]

The Corresponding profit is x[i]*V[i]

 The problem is then to find the values of the array x[1:n] so

that x[1]V[1] + x[2]V[2] + .. . + x[n]V[n] is maximized subject to

the constraint that x[1]W[1] + x[2]W[2] + . .. + x[n]W[n] ≤ C

Algorithms Greedy Algorithms 14

KNAPSACK PROBLEM

 Given a list of resources, select some of them, such
that:

▪ Your benefits are maximized

▪ Your cost remains with the budget constraint

 “Cost Benefit Optimization” or “Best Bang for the
Buck”

 5 Million Visitors for 1 Million $

vs.

 9 Million Visitors for 3 Million $

Algorithms Greedy Algorithms 15

KNAPSACK

 Policy 1: Choose the lightest remaining item, and

take as much of it as can fit.

 Policy 2: Choose the most profitable remaining item,

and take as much of it as can fit.

 Policy 3: Choose the item with the highest price per

unit weight (V[i]/W[i]), and take as much of it as can

fit.

 Exercise: Prove by a counter example that Policy 1

does not guarantee an optimal solution. Same with

Policy 2. Policy 3 always gives an optimal solution

Algorithms Greedy Algorithms 16

3 OPTIONS

Capacity = 7

Solution:

1. All of items {1, 2} and a fraction of item 3

2. But, how to handle this problem instance if we

cannot take “fractional” portions of items.

Algorithms Greedy Algorithms 17

EXAMPLE

Item # 1 2 3 4 5

V ($) 3 5 10 11 9

W (lb) 1 2 5 6 7

V/W 3 2.5 2 1.83 1.28

Capacity = 10

Optimal Solution Value: 5 + 12 + 3 = 20.

Algorithms Greedy Algorithms 18

EXAMPLE 2

Item # 1 2 3 4 5

V ($) 4 5 9 12 7

W (lb) 5 2 6 6 10

V/W 0.8 2.5 1.5 2 0.7

 No, in fact, it can be as bad as you want to make it

to be.

▪ Example?

 A simple fix can make this algorithm only as bad as

a ratio of 2.

▪ How?

Algorithms Greedy Algorithms 19

IS GREEDY ALGORITHM FOR INTEGER

KNAPSACK PROBLEM OPTIMAL?

 Definitions

▪ A spanning tree of a graph is a tree that has all nodes in the

graph, and all edges come from the graph

▪ Weight of tree = Sum of weights of edges in the tree

 Statement of the MST problem

▪ Input : a weighted connected graph G=(V,E). The weights are

represented by the 2D array (matrix) W[1:n,1:n], where W[i,j] is

the weight of edge (i,j).

▪ Output: Find a minimum-weight spanning tree of G.

Algorithms Greedy Algorithms 20

MINIMUM SPANNING TREE

 Selection Policy: Minimum weighted edge that

does NOT create a cycle.

 Procedure ComputeMST(in:G, W[1:n,1:n]; out:T)

Sort edges: e[1], e[2], .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n -1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Algorithms Greedy Algorithms 21

GREEDY ALGORITHM

Sort edges: e[1], e[2], .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Algorithms Greedy Algorithms 22

HOW TO MAKE THIS EFFICIENT?

Sort edges: e[1], e[2], .. e[m]. O(m log n)

Initialize counter j = 1 O(1)

Initialize tree T to empty O(1)

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Then, total time complexity becomes:

m log n + f(n,m) * m + g(n,m) * n

Algorithms Greedy Algorithms 23

HOW TO MAKE THIS EFFICIENT?

Suppose this takes f(n,m) time

Suppose this takes g(n,m) time

Each set is marked by a leader – the root

node

When calling “find” on a set’s member, it

returns the leader

Leader maintains a rank (or height)

When doing a union, make the tree with

smaller height (or rank) to be a child of the

tree with the larger height

Note that this is NOT a binary tree.

Algorithms Greedy Algorithms 24

UNION FIND DATA STRUCTURE

Algorithms Greedy Algorithms 25

UNION FIND != BINARY TREE

 When doing a find, follow that up by compressing the
path to the root, by making every node (along the
way) point to the root.

 This is not easy to prove, but Union Find with Path
compression, when starting with n nodes and m
operations, takes O(m log*(n)) time instead of O(m
log n) time, where the log* function is the iterated
logarithm (also called the super logarithm) and is an
extremely slow growing function.

 log*(n) is defined as follows:

▪ 0, if n <= 1

▪ 1 + log*(log n) if n > 1

Algorithms Greedy Algorithms 26

UNION FIND – PATH COMPRESSION

 Log* (10000)

 1 + log* 4

 2 + log* 0.6

 2

 log*(10^(10^10000))

 = 1 + log*(log(10^10^10000))

 = 1 + log*(10^10000)

 = 1 + 1 + log*(log(10^10000))

 = 2 + log*(10000)

 3 + log*(4)

 = 4

Algorithms Greedy Algorithms 27

EXAMPLE OF LOG* VALUES

 Using 2 Find operations to check if adding an edge

will create a cycle or not.

 When adding an edge, use a Union Operation

Algorithms Greedy Algorithms 28

TIME COMPLEXITY ANALYSIS OF KRUSKAL’S

ALGORITHM

 Proof by contradiction

 Must practice the writing of this.

Algorithms Greedy Algorithms 29

WHY DOES KRUSKAL’S ALGORITHM WORK?

 Optimal Substructure Property: A problem has

optimal substructure if an optimal solution to the

problem contains within it, optimal solutions to

its sub problems.

 Greedy Choice Property: If a local greedy choice is

made, then an optimal solution including this choice

is possible.

Algorithms Greedy Algorithms 30

TWO BASIC PROPERTIES OF OPTIMAL

GREEDY ALGORITHMS

 A subset system is a set E together with a set of subsets of E ,
called I , such that I is closed under inclusion. This means that if
X ⊆ Y and Y ∈ I , then X ∈ I . (I is sometimes referred to as set of
independent sets.)
The “Hereditary Property” . Subset of a valid solution, is valid .

 A subset system is a matroid if it sat isfies the exchange
property: I f i1 and i2 are sets in I and i1 has fewer elements than
i2, then there exists an e lement e ∈ i2 \ i1 such that i1 ∪ {e} ∈ I .
The augmentat ion property or the independent set exchange
property. I f a larger so lut ion exists , we should be able to add
something to the current solution. (“Build solution one step at a
time.”)

 For any subset system (E,I) , the greedy algorithm solves the
optimization problem for (E,I) if and only if (E,I) is a matroid.

Algorithms Greedy Algorithms 31

GREEDY ALGORITHMS AND MATROIDS

 Consider the set of edges of a graph, and set of

“forests” (forest is a set of edges that doesn’t have a

cycle)

 Subset of that “forest” is also a “forest”. This

satisfies the hereditary property. So, this is a subset

system.

 Consider forest f1, and forest f2. If f1 has less edges

than f2, then you can certainly add an edge from f2

to f1 such that f1’ will still be a forest.

 So, the system of forests is a matroid.

Algorithms Greedy Algorithms 32

AN EXAMPLE OF MATROID

The set of forests in a graph forms a matroid. It is known as the graphic matroid.

 Consider a graph, and the set of “cliques” (a clique is

a set of vertices that are all connected to each other)

 A sub-set of clique is also a clique.

 So, clique is a subset system.

 Given a clique K1 and a clique K2, suppose K2 has

more vertices than K1. It is NOT guaranteed that we

can add a vertex from K2 to K1 and keep the K1’ as

a clique.

 Therefore, the clique system is not a matroid.

Algorithms Greedy Algorithms 33

AN EXAMPLE OF A “NON -MATROID”

 Prone to overuse

▪ You shouldn’t use this algorithm unless you can prove that the
solution is optimal.

▪ That is, no points in MT/Final for using greedy algorithm to
produce a suboptimal solution, where another algorithmic
technique (such as D&C) would have resulted in an optimal
solution.

 Why?

▪ Optimality has a “business value”. Suppose you are trying to
maximize the flights that you can schedule using 3 aircrafts.

▪ Time complexity merely represents a “cost of computation” of
that schedule.

▪ If one algorithm runs in 1 minute, but schedules only 7 flights,
and another algorithm runs in 2 hours, but schedules 8 flights,
which one would you use?

Algorithms Greedy Algorithms 34

WHEN NOT TO USE GREEDY ALGORITHM

 Symbol Encoding

 Interval Scheduling

Algorithms Greedy Algorithms 35

MORE GREEDY ALGORITHM PROBLEMS

 Chess

 Sorting

 Shortest path computation

 Knapsack

Algorithms Greedy Algorithms 36

GREEDY: TO APPLY OR NOT TO APPLY

CS 6212

Analysis

Asymptotic

NP-
Completeness

Design

D&C

Greedy

DP

Graph

B&B

Applications

Algorithms Greedy Algorithms 37

WHERE WE ARE

✓ Done

✓ Done

✓ Done

 Greedy

▪ Book – first problem on interval

scheduling classes

▪ http://en.wikipedia.org/wiki/Huffman_coding

▪ http://www.cs.kent.edu/~dragan/AdvAlg05/GreedyAlg-1x1.pdf

 Dynamic Programming

▪ Dynamic Programming: Book sections 6.1 – 6.4

▪ http://www.yaroslavvb.com/papers/wagner-dynamic.pdf

Algorithms Greedy Algorithms 38

READING ASSIGNMENT

Application # 5

http://en.wikipedia.org/wiki/Huffman_coding
http://www.cs.kent.edu/~dragan/AdvAlg05/GreedyAlg-1x1.pdf
http://www.yaroslavvb.com/papers/wagner-dynamic.pdf

	Slide 1: Greedy algorithms Kruskal’s algorithm using Union Find minimum spanning tree greedy algorithms and matroids
	Slide 2: Logistics
	Slide 3: Where we are
	Slide 4: Greedy Method
	Slide 5: Applications
	Slide 6: Sorting using greedy method
	Slide 7: Insertion Sort, Example Run..
	Slide 8: Time complexity analysis
	Slide 9: Merging Sorted Lists
	Slide 10: MERGING TWO LISTS
	Slide 11: Example
	Slide 12: Merging Sorted Lists
	Slide 13: Merging Sorted Lists
	Slide 14: Knapsack Problem
	Slide 15: KNAPSACK
	Slide 16: 3 Options
	Slide 17: Example
	Slide 18: Example 2
	Slide 19: Is greedy algorithm for INTEGER knapsack problem Optimal?
	Slide 20: Minimum Spanning Tree
	Slide 21: Greedy Algorithm
	Slide 22: How to Make this Efficient?
	Slide 23: How to Make this Efficient?
	Slide 24: Union Find Data Structure
	Slide 25: UNION FIND != Binary Tree
	Slide 26: Union find – Path compression
	Slide 27: Example of Log* values
	Slide 28: Time complexity analysis of Kruskal’s Algorithm
	Slide 29: Why does Kruskal’s Algorithm work?
	Slide 30: Two basic properties of optimal greedy algorithms
	Slide 31: Greedy algorithms and matroids
	Slide 32: An example of matroid
	Slide 33: An example of a “NON-matroid”
	Slide 34: when not to use greedy algorithm
	Slide 35: More Greedy Algorithm problems
	Slide 36: Greedy: To Apply or not to apply
	Slide 37: Where we are
	Slide 38: Reading ASSIGNMENT

