

Design and

GREEDY ALGORITHMS | Analysis of

KRUSKAL'S ALGORITHM USING UNION FIND MINIMUM SPANNING TREE GREEDY ALGORITHMS AND MATROIDS

LOGISTICS

Instructor

Prof. Amrinder Arora amrinder@gwu.edu Please copy TA on emails Please feel free to call as well \odot

E Available for study sessions Science and Engineering Hall GWU

WHERE WE ARE

GREEDY METHOD

- **A** technique to build a complete solution by making a sequence of "best selection" steps
- Selection depends upon actual problem
- **Focus is simply on "what is best step from this point"**

APPLICATIONS

- Applications of greedy method are *very* broad.
- **Examples:**
	- **E** Sorting
	- **EXERGING Sorted lists**
	- **E** Knapsack
	- **Minimum Spanning Tree (MST)**
	- **Hoffman Encoding**

SORTING USING GREEDY METHOD

- **Select the minimum element**
- **Nove it to the beginning**
- **EXCONTINUE doing it for the remaining array**

```
Given array a[1..n] of unsorted numbers
\blacksquare For i = 1 to n-1
   \blacksquare For j = i+1 to n
      \blacksquare If (a[i] > a[j]) swap (a[i], a[j])
```
Application ***

INSERTION SORT, EXAMPLE RUN..

1, 5, 4, 19, 2, 90, 3

Objective: To sort the array

================

1, 2, 4, 3, 5, 19, 90

TIME COMPLEXITY ANALYSIS

How long does it take to sort using greedy method? Is it optimal?

MERGING SORTED LISTS

- **Input: n sorted arrays of lengths** $L[1], L[2], ..., L[n]$
- **Problem: To merge all the arrays into one array as** fast as possible. Which pair to merge every time?

We observe that:

- **The final list will be a list of length** $L[1] + L[2] + ... + L[n]$
- **The final list will be same regardless of the sequence in which** we merge lists
- **EX However, the time taken may not be the same.**

Application ** 2

MERGING TWO LISTS

- List 1 of size 7: $\{1, 2, 5, 21, 23, 44, 64\}$
- List 2 of size 12: {1, 4, 15, 16, 17, 19, 34, 38, 56, 63, 69, 89}
- Merged list of size 19 (in time 19): {1, 1, 2, 4, 5, 15, 16, 17, 19, 21, 23, 34, 38, 44, 56, 63, 64, 69, 89}

• You can actually prove that merging can take up to $n1 + n2 - 1$ in the worst case. $O(n1 + n2)$ time.

EXAMPLE

- 5 Lists of sizes: 20M, 25M, 30M, 35M, 40M
- **Finally, when it is merged, we will have ONE list of size** 150M.

Option 1: $(((1, 5), 3), 2), 4)$

- \blacksquare 20 with 40 \rightarrow 60 (in 60 units of time)
- \blacksquare 60 with 30 \rightarrow 90 (in 90 units)
- \blacksquare {25, 35, 90}
- \blacksquare 25 with 90 \rightarrow 115 (in 115 units of time)
- \blacksquare 115 with 35 \rightarrow 150 (in 150 units of time)
- Total time = $60 + 90 + 115 + 150 = 415M$ units of time

 \blacksquare Optimal: 45 + 65 + 85 + 150 = 345M

MERGING SORTED LISTS MERGING SORTED LISTS

- Greedy method: Merge the two shortest remaining arrays. **ERGING SORTED LISTS
Finally method: Merge the two shortest remaining arrays. A FRANCE SORTED LISTS

Fancy method: Merge the two shortest remaining arrays.**

Fo Implement, we can keep a data structure, that
- To Implement, we can keep a data structure, that allows us to: **MI
Greedy meth
arrays.
To Implemer
allows us to:
§Remove the t** त
Gamary and allow sheep and allows
To Implement, we can keep a data
Ilows us to:
§ Remove the two smallest arrays
§ Add a larger array
§ Keep doing this until we have one array
	- \S Remove the two smallest arrays
	- S Add a larger array
	- \S Keep doing this until we have one array

MERGING SORTED LISTS

- **Implement using heap**
- **Build the original heap** $O(n)$ **time**
- \blacksquare For $i = 1$ to n-1
	- **Remove two smallest elements: 2 log (n)**
	- **Eadd a new element log(n) time**
- Total time: O(n log n)
	- **.** Here n is the number of sorted lists. n has NOTHING to do with the number of elements in any of the lists – that is entirely outside of our knowledge, we are only given the relative sizes of the lists.

KNAPSACK PROBLEM

- Input: A weight capacity C, and n items of weights $W[1:n]$ and monetary value V[1:n].
- **Problem: Determine which items to take and how much of** each item so that the total weight is \leq C, and the total value (profit) is maximized.

Formulation of the problem: Let x[i] be the fraction taken from item i. $0 \le x[i] \le 1$. The weight of the part taken from item i is $x[i]$ *W[i] The Corresponding profit is x[i]*V[i]

The problem is then to find the values of the array x[1:n] so that $x[1]V[1] + x[2]V[2] + ... + x[n]V[n]$ is maximized subject to the constraint that $x[1]W[1] + x[2]W[2] + ... + x[n]W[n] \leq C$

APPICOTION #3

KNAPSACK

- **Given a list of resources, select some of them, such** that:
	- Your benefits are maximized
	- **Your cost remains with the budget constraint**
- **E** "Cost Benefit Optimization" or "Best Bang for the Buck"
- 5 Million Visitors for 1 Million \$
- vs.
- 9 Million Visitors for 3 Million \$

3 OPTIONS

- **Policy 1: Choose the lightest remaining item, and** take as much of it as can fit.
- **Policy 2: Choose the most profitable remaining item,** and take as much of it as can fit.
- **Policy 3: Choose the item with the highest price per** unit weight (V[i]/W[i]), and take as much of it as can fit.
- **Exercise: Prove by a counter example that Policy 1** does not guarantee an optimal solution. Same with Policy 2. Policy 3 always gives an optimal solution

EXAMPLE

Capacity = 7

Solution:

- 1. All of items {1, 2} and a fraction of item 3
- 2. But, how to handle this problem instance if we cannot take "fractional" portions of items.

EXAMPLE 2

Capacity = 10

Optimal Solution Value: $5 + 12 + 3 = 20$ **.**

IS GREEDY ALGORITHM FOR INTEGER KNAPSACK PROBLEM OPTIMAL?

- No, in fact, it can be as bad as you want to make it to be.
	- Example?
- **A** simple fix can make this algorithm only as bad as a ratio of 2.
	- **E** How?

MINIMUM SPANNING TREE

Definitions

Azolication ** R

- **A** spanning tree of a graph is a tree that has all nodes in the graph, and all edges come from the graph
- **. Weight of tree = Sum of weights of edges in the tree**

Statement of the MST problem

- **Input : a weighted connected graph** $G=(V,E)$ **. The weights are** represented by the 2D array (matrix) $W[1:n,1:n]$, where $W[i,j]$ is the weight of edge (i,j).
- **Output: Find a minimum-weight spanning tree of G.**

GREEDY ALGORITHM

- **Selection Policy: Minimum weighted edge that** does NOT create a cycle.
- **Procedure ComputeMST(in:G, W[1:n,1:n]; out:T)**

```
Sort edges: e[1], e[2], .. e[m].
```

```
Initialize counter j = 1
```

```
Initialize tree T to empty
```

```
While (number of edges in Tree \leq n-1) {
```

```
Does adding an edge e[j] create a cycle?
```

```
If No, add edge e[j] to tree T
```


}

HOW TO MAKE THIS EFFICIENT?

Sort edges: e[1], e[2], .. e[m]. Initialize counter $j = 1$ Initialize tree T to empty While (number of edges in Tree < n-1) { Does adding an edge e[j] create a cycle? If No, add edge e[j] to tree T }

HOW TO MAKE THIS EFFICIENT?

Sort edges: $e[1], e[2], ... e[m].$ O(m log n) Initialize counter $j = 1$ $O(1)$ Initialize tree T to empty $O(1)$ While (number of edges in Tree < n-1) { Does adding an edge e[j] create a cycle? If No, add edge e[j] to tree T } Suppose this takes f(n,m) time

Suppose this takes g(n,m) time

Then, total time complexity becomes: m $log n + f(n,m) * m + g(n,m) * n$

UNION FIND DATA STRUCTURE

- Each set is marked by a leader the root node
- When calling "find" on a set's member, it returns the leader
- **Leader maintains a rank (or height)**

When doing a union, make the tree with smaller height (or rank) to be a child of the tree with the larger height

Note that this is NOT a binary tree.

UNION FIND != BINARY TREE

UNION FIND – PATH COMPRESSION

- When doing a find, follow that up by compressing the path to the root, by making every node (along the way) point to the root.
- **This is not easy to prove, but Union Find with Path** compression, when starting with *n* nodes and *m* operations, takes *O(m log*(n))* time instead of *O(m log n)* time, where the *log** function is the iterated logarithm (also called the super logarithm) and is an extremely slow growing function.
- *log*(n)* is defined as follows:
	- \blacksquare 0, if $n \leq 1$
	- *1 + log*(log n)* if *n > 1*

EXAMPLE OF LOG* VALUES

```
Log* (10000)
-1 + log* 4-2 + log* 0.6\blacksquare 2
```

```
\blacksquare \log^*(10^(10^110000))= 1 + log*(log(10^10^10^10^0))= 1 + log*(10^{\circ}10000)= 1 + 1 + log*(log(10^110000))= 2 + log*(10000)\blacksquare 3 + \log^*(4)
```

$$
\blacksquare = 4
$$

TIME COMPLEXITY ANALYSIS OF KRUSKAL'S ALGORITHM

- **Using 2 Find operations to check if adding an edge** will create a cycle or not.
- When adding an edge, use a Union Operation

WHY DOES KRUSKAL'S ALGORITHM WORK?

- **Proof by contradiction**
- **Must practice the writing of this.**

TWO BASIC PROPERTIES OF OPTIMAL GREEDY ALGORITHMS

- **Optimal Substructure Property: A problem has** optimal substructure if an optimal solution to the problem contains within it, optimal solutions to its sub problems.
- **Greedy Choice Property: If a local greedy choice is** made, then an optimal solution including this choice is possible.

GREEDY ALGORITHMS AND MATROIDS

- A subset system is a set E together with a set of subsets of *E*, called *I*, such that *I* is closed under inclusion. This means that if *X* [⊆] *Y* and *Y* [∈] *I*, then *X* [∈] *I*. (*I* is sometimes referred to as set of independent sets.) The "Hereditary Property". Subset of a valid solution, is valid.
- A subset system is a matroid if it satisfies the exchange property: If *i¹* and *i²* are sets in *I* and *i¹* has fewer elements than i_2 , then there exists an element $e \in i_2 \setminus i_1$ such that $i_1 \cup \{e\} \in I$. The augmentation property or the independent set exchange property. If a larger solution exists, we should be able to add something to the current solution. ("Build solution one step at a time.")
- For any subset system *(E,I)*, the greedy algorithm solves the optimization problem for *(E,I)* if and only if *(E,I)* is a matroid.

AN EXAMPLE OF MATROID

- Consider the set of edges of a graph, and set of "forests" (forest is a set of edges that doesn't have a cycle)
- Subset of that "forest" is also a "forest". This satisfies the hereditary property. So, this is a subset system.
- Consider forest f1, and forest f2. If f1 has less edges than f2, then you can certainly add an edge from f2 to f1 such that f1' will still be a forest.

■ So, the system of forests is a matroid.

The set of forests in a graph forms a **matroid**. It is known as the **graphic matroid**.

AN EXAMPLE OF A "NON-MATROID"

- Consider a graph, and the set of "cliques" (a clique is a set of vertices that are all connected to each other)
- **A** sub-set of clique is also a clique.
- So, clique is a subset system.
- **Given a clique K1 and a clique K2, suppose K2 has** more vertices than K1. It is NOT guaranteed that we can add a vertex from K2 to K1 and keep the K1' as a clique.
- **Therefore, the clique system is not a matroid.**

WHEN NOT TO USE GREEDY ALGORITHM

Prone to overuse

- **You shouldn't use this algorithm unless you can prove that the** solution is optimal.
- **That is, no points in MT/Final for using greedy algorithm to** produce a suboptimal solution, where another algorithmic technique (such as D&C) would have resulted in an optimal solution.
- Why?
	- **. Optimality has a "business value". Suppose you are trying to** maximize the flights that you can schedule using 3 aircrafts.
	- Time complexity merely represents a "cost of computation" of that schedule.
	- **If one algorithm runs in 1 minute, but schedules only 7 flights,** and another algorithm runs in 2 hours, but schedules 8 flights, which one would you use?

MORE GREEDY ALGORITHM PROBLEMS

 Symbol Encoding **Interval Scheduling**

GREEDY: TO APPLY OR NOT TO APPLY

- **Chess**
- Sorting
- **Shortest path computation**
- **Knapsack**

WHERE WE ARE

READING ASSIGNMENT

Greedy

Application # 5

- **Book first problem on interval** scheduling classes
- **Inttp://en.wikipedia.org/wiki/Huffman_coding**
- <http://www.cs.kent.edu/~dragan/AdvAlg05/GreedyAlg-1x1.pdf>
- **Dynamic Programming**
	- Dynamic Programming: Book sections 6.1 6.4
	- **Inttp://www.yaroslavvb.com/papers/wagner-dynamic.pdf**