
Design and

Analysis of

Algorithms
GREEDY ALGORITHMS
KRUSKAL’S ALGORITHM USING UNION FIND

MINIMUM SPANNING TREE

GREEDY ALGORITHMS AND MATROIDS

 Instructor

Prof. Amrinder Arora

amrinder@gwu.edu

Please copy TA on emails

Please feel free to call as well

☺

 Available for study sessions

Science and Engineering Hall

GWU

Algorithms Greedy Algorithms 2

LOGISTICS

mailto:amrinder@gwu.edu

CS 6212

Analysis

Asymptotic

NP-
Completeness

Design

D&C

Greedy

DP

Graph

B&B

Applications

Algorithms Greedy Algorithms 3

WHERE WE ARE

✓ Done

✓ Done

❖ Starting today..

 A technique to build a complete solution by making a

sequence of “best selection” steps

 Selection depends upon actual problem

 Focus is simply on “what is best step from this point”

Algorithms Greedy Algorithms 4

GREEDY METHOD

 Applications of greedy method are very broad.

 Examples:

▪ Sorting

▪ Merging sorted lists

▪ Knapsack

▪ Minimum Spanning Tree (MST)

▪ Hoffman Encoding

Algorithms Greedy Algorithms 5

APPLICATIONS

 Select the minimum element

 Move it to the beginning

 Continue doing it for the remaining array

Given array a[1..n] of unsorted numbers

 For i = 1 to n-1

▪ For j = i+1 to n

▪ If (a[i] > a[j]) swap (a[i], a[j])

Algorithms Greedy Algorithms 6

SORTING USING GREEDY METHOD

 1, 5, 4, 19, 2, 90, 3

 Objective: To sort the array

 1, 2, 4, 3, 5, 19, 90

 ================

Algorithms Greedy Algorithms 7

INSERTION SORT, EXAMPLE RUN..

 How long does it take to sort using greedy method?

 Is it optimal?

Algorithms Greedy Algorithms 8

TIME COMPLEXITY ANALYSIS

 Input: n sorted arrays of lengths

L[1], L[2],...,L[n]

 Problem: To merge all the arrays into one array as

fast as possible. Which pair to merge every time?

 We observe that:

▪ The final list will be a list of length L[1] + L[2] + … + L[n]

▪ The final list will be same regardless of the sequence in which

we merge lists

▪ However, the time taken may not be the same.

Algorithms Greedy Algorithms 9

MERGING SORTED LISTS

 List 1 of size 7: {1, 2, 5, 21, 23, 44, 64}

 List 2 of size 12: {1, 4, 15, 16, 17, 19, 34, 38, 56,

63, 69, 89}

 Merged list of size 19 (in time 19):

 {1, 1, 2, 4, 5, 15, 16, 17, 19, 21, 23, 34, 38, 44, 56,

63, 64, 69, 89}

 You can actually prove that merging can take up to

n1 + n2 – 1 in the worst case. O(n1 + n2) time.

Algorithms Greedy Algorithms 10

MERGING TWO LISTS

 5 Lists of sizes: 20M, 25M, 30M, 35M, 40M

 Finally, when it is merged, we will have ONE list of size
150M.

Option 1: ((((1, 5), 3), 2), 4)

 20 with 40 ➔ 60 (in 60 units of time)

 60 with 30 ➔ 90 (in 90 units)

 {25, 35, 90}

 25 with 90 ➔ 115 (in 115 units of time)

 115 with 35 ➔ 150 (in 150 units of time)

 Total time = 60 + 90 + 115 + 150 = 415M units of t ime

 Optimal: 45 + 65 + 85 + 150 = 345M

Algorithms Greedy Algorithms 11

EXAMPLE

 Greedy method: Merge the two shortest remaining

arrays.

 To Implement, we can keep a data structure, that

allows us to:

▪ Remove the two smallest arrays

▪ Add a larger array

▪ Keep doing this until we have one array

Algorithms Greedy Algorithms 12

MERGING SORTED LISTS

¡ Greedy method: Merge the two shortest remaining

arrays.

¡ To Implement, we can keep a data structure, that

allows us to:

§ Remove the two smallest arrays

§ Add a larger array

§ Keep doing this until we have one array

Algorithms Greedy Algorithms 9

MERGING SORTED LISTS

 Implement using heap

 Build the original heap – O(n) time

 For i = 1 to n-1

▪ Remove two smallest elements: 2 log (n)

▪ Add a new element log(n) time

 Total time: O(n log n)

▪ Here n is the number of sorted lists. n has NOTHING to do with

the number of elements in any of the lists – that is entirely

outside of our knowledge, we are only given the relative sizes

of the lists.

Algorithms Greedy Algorithms 13

MERGING SORTED LISTS

 Input: A weight capacity C, and n items of weights W[1:n] and

monetary value V[1:n].

 Problem: Determine which items to take and how much of

each item so that the total weight is ≤ C, and the total value

(profit) is maximized.

 Formulation of the problem: Let x[i] be the fraction taken

from item i. 0 ≤ x[i] ≤ 1.

The weight of the par t taken from item i is x[i]*W[i]

The Corresponding profit is x[i]*V[i]

 The problem is then to find the values of the array x[1:n] so

that x[1]V[1] + x[2]V[2] + .. . + x[n]V[n] is maximized subject to

the constraint that x[1]W[1] + x[2]W[2] + . .. + x[n]W[n] ≤ C

Algorithms Greedy Algorithms 14

KNAPSACK PROBLEM

 Given a list of resources, select some of them, such
that:

▪ Your benefits are maximized

▪ Your cost remains with the budget constraint

 “Cost Benefit Optimization” or “Best Bang for the
Buck”

 5 Million Visitors for 1 Million $

vs.

 9 Million Visitors for 3 Million $

Algorithms Greedy Algorithms 15

KNAPSACK

 Policy 1: Choose the lightest remaining item, and

take as much of it as can fit.

 Policy 2: Choose the most profitable remaining item,

and take as much of it as can fit.

 Policy 3: Choose the item with the highest price per

unit weight (V[i]/W[i]), and take as much of it as can

fit.

 Exercise: Prove by a counter example that Policy 1

does not guarantee an optimal solution. Same with

Policy 2. Policy 3 always gives an optimal solution

Algorithms Greedy Algorithms 16

3 OPTIONS

Capacity = 7

Solution:

1. All of items {1, 2} and a fraction of item 3

2. But, how to handle this problem instance if we

cannot take “fractional” portions of items.

Algorithms Greedy Algorithms 17

EXAMPLE

Item # 1 2 3 4 5

V ($) 3 5 10 11 9

W (lb) 1 2 5 6 7

V/W 3 2.5 2 1.83 1.28

Capacity = 10

Optimal Solution Value: 5 + 12 + 3 = 20.

Algorithms Greedy Algorithms 18

EXAMPLE 2

Item # 1 2 3 4 5

V ($) 4 5 9 12 7

W (lb) 5 2 6 6 10

V/W 0.8 2.5 1.5 2 0.7

 No, in fact, it can be as bad as you want to make it

to be.

▪ Example?

 A simple fix can make this algorithm only as bad as

a ratio of 2.

▪ How?

Algorithms Greedy Algorithms 19

IS GREEDY ALGORITHM FOR INTEGER

KNAPSACK PROBLEM OPTIMAL?

 Definitions

▪ A spanning tree of a graph is a tree that has all nodes in the

graph, and all edges come from the graph

▪ Weight of tree = Sum of weights of edges in the tree

 Statement of the MST problem

▪ Input : a weighted connected graph G=(V,E). The weights are

represented by the 2D array (matrix) W[1:n,1:n], where W[i,j] is

the weight of edge (i,j).

▪ Output: Find a minimum-weight spanning tree of G.

Algorithms Greedy Algorithms 20

MINIMUM SPANNING TREE

 Selection Policy: Minimum weighted edge that

does NOT create a cycle.

 Procedure ComputeMST(in:G, W[1:n,1:n]; out:T)

Sort edges: e[1], e[2], .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n -1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Algorithms Greedy Algorithms 21

GREEDY ALGORITHM

Sort edges: e[1], e[2], .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Algorithms Greedy Algorithms 22

HOW TO MAKE THIS EFFICIENT?

Sort edges: e[1], e[2], .. e[m]. O(m log n)

Initialize counter j = 1 O(1)

Initialize tree T to empty O(1)

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Then, total time complexity becomes:

m log n + f(n,m) * m + g(n,m) * n

Algorithms Greedy Algorithms 23

HOW TO MAKE THIS EFFICIENT?

Suppose this takes f(n,m) time

Suppose this takes g(n,m) time

Each set is marked by a leader – the root

node

When calling “find” on a set’s member, it

returns the leader

Leader maintains a rank (or height)

When doing a union, make the tree with

smaller height (or rank) to be a child of the

tree with the larger height

Note that this is NOT a binary tree.

Algorithms Greedy Algorithms 24

UNION FIND DATA STRUCTURE

Algorithms Greedy Algorithms 25

UNION FIND != BINARY TREE

 When doing a find, follow that up by compressing the
path to the root, by making every node (along the
way) point to the root.

 This is not easy to prove, but Union Find with Path
compression, when starting with n nodes and m
operations, takes O(m log*(n)) time instead of O(m
log n) time, where the log* function is the iterated
logarithm (also called the super logarithm) and is an
extremely slow growing function.

 log*(n) is defined as follows:

▪ 0, if n <= 1

▪ 1 + log*(log n) if n > 1

Algorithms Greedy Algorithms 26

UNION FIND – PATH COMPRESSION

 Log* (10000)

 1 + log* 4

 2 + log* 0.6

 2

 log*(10^(10^10000))

 = 1 + log*(log(10^10^10000))

 = 1 + log*(10^10000)

 = 1 + 1 + log*(log(10^10000))

 = 2 + log*(10000)

 3 + log*(4)

 = 4

Algorithms Greedy Algorithms 27

EXAMPLE OF LOG* VALUES

 Using 2 Find operations to check if adding an edge

will create a cycle or not.

 When adding an edge, use a Union Operation

Algorithms Greedy Algorithms 28

TIME COMPLEXITY ANALYSIS OF KRUSKAL’S

ALGORITHM

 Proof by contradiction

 Must practice the writing of this.

Algorithms Greedy Algorithms 29

WHY DOES KRUSKAL’S ALGORITHM WORK?

 Optimal Substructure Property: A problem has

optimal substructure if an optimal solution to the

problem contains within it, optimal solutions to

its sub problems.

 Greedy Choice Property: If a local greedy choice is

made, then an optimal solution including this choice

is possible.

Algorithms Greedy Algorithms 30

TWO BASIC PROPERTIES OF OPTIMAL

GREEDY ALGORITHMS

 A subset system is a set E together with a set of subsets of E ,
called I , such that I is closed under inclusion. This means that if
X ⊆ Y and Y ∈ I , then X ∈ I . (I is sometimes referred to as set of
independent sets.)
The “Hereditary Property” . Subset of a valid solution, is valid .

 A subset system is a matroid if it sat isfies the exchange
property: I f i1 and i2 are sets in I and i1 has fewer elements than
i2, then there exists an e lement e ∈ i2 \ i1 such that i1 ∪ {e} ∈ I .
The augmentat ion property or the independent set exchange
property. I f a larger so lut ion exists , we should be able to add
something to the current solution. (“Build solution one step at a
time.”)

 For any subset system (E,I) , the greedy algorithm solves the
optimization problem for (E,I) if and only if (E,I) is a matroid.

Algorithms Greedy Algorithms 31

GREEDY ALGORITHMS AND MATROIDS

 Consider the set of edges of a graph, and set of

“forests” (forest is a set of edges that doesn’t have a

cycle)

 Subset of that “forest” is also a “forest”. This

satisfies the hereditary property. So, this is a subset

system.

 Consider forest f1, and forest f2. If f1 has less edges

than f2, then you can certainly add an edge from f2

to f1 such that f1’ will still be a forest.

 So, the system of forests is a matroid.

Algorithms Greedy Algorithms 32

AN EXAMPLE OF MATROID

The set of forests in a graph forms a matroid. It is known as the graphic matroid.

 Consider a graph, and the set of “cliques” (a clique is

a set of vertices that are all connected to each other)

 A sub-set of clique is also a clique.

 So, clique is a subset system.

 Given a clique K1 and a clique K2, suppose K2 has

more vertices than K1. It is NOT guaranteed that we

can add a vertex from K2 to K1 and keep the K1’ as

a clique.

 Therefore, the clique system is not a matroid.

Algorithms Greedy Algorithms 33

AN EXAMPLE OF A “NON -MATROID”

 Prone to overuse

▪ You shouldn’t use this algorithm unless you can prove that the
solution is optimal.

▪ That is, no points in MT/Final for using greedy algorithm to
produce a suboptimal solution, where another algorithmic
technique (such as D&C) would have resulted in an optimal
solution.

 Why?

▪ Optimality has a “business value”. Suppose you are trying to
maximize the flights that you can schedule using 3 aircrafts.

▪ Time complexity merely represents a “cost of computation” of
that schedule.

▪ If one algorithm runs in 1 minute, but schedules only 7 flights,
and another algorithm runs in 2 hours, but schedules 8 flights,
which one would you use?

Algorithms Greedy Algorithms 34

WHEN NOT TO USE GREEDY ALGORITHM

 Symbol Encoding

 Interval Scheduling

Algorithms Greedy Algorithms 35

MORE GREEDY ALGORITHM PROBLEMS

 Chess

 Sorting

 Shortest path computation

 Knapsack

Algorithms Greedy Algorithms 36

GREEDY: TO APPLY OR NOT TO APPLY

CS 6212

Analysis

Asymptotic

NP-
Completeness

Design

D&C

Greedy

DP

Graph

B&B

Applications

Algorithms Greedy Algorithms 37

WHERE WE ARE

✓ Done

✓ Done

✓ Done

 Greedy

▪ Book – first problem on interval

scheduling classes

▪ http://en.wikipedia.org/wiki/Huffman_coding

▪ http://www.cs.kent.edu/~dragan/AdvAlg05/GreedyAlg-1x1.pdf

 Dynamic Programming

▪ Dynamic Programming: Book sections 6.1 – 6.4

▪ http://www.yaroslavvb.com/papers/wagner-dynamic.pdf

Algorithms Greedy Algorithms 38

READING ASSIGNMENT

Application # 5

http://en.wikipedia.org/wiki/Huffman_coding
http://www.cs.kent.edu/~dragan/AdvAlg05/GreedyAlg-1x1.pdf
http://www.yaroslavvb.com/papers/wagner-dynamic.pdf

	Slide 1: Greedy algorithms Kruskal’s algorithm using Union Find minimum spanning tree greedy algorithms and matroids
	Slide 2: Logistics
	Slide 3: Where we are
	Slide 4: Greedy Method
	Slide 5: Applications
	Slide 6: Sorting using greedy method
	Slide 7: Insertion Sort, Example Run..
	Slide 8: Time complexity analysis
	Slide 9: Merging Sorted Lists
	Slide 10: MERGING TWO LISTS
	Slide 11: Example
	Slide 12: Merging Sorted Lists
	Slide 13: Merging Sorted Lists
	Slide 14: Knapsack Problem
	Slide 15: KNAPSACK
	Slide 16: 3 Options
	Slide 17: Example
	Slide 18: Example 2
	Slide 19: Is greedy algorithm for INTEGER knapsack problem Optimal?
	Slide 20: Minimum Spanning Tree
	Slide 21: Greedy Algorithm
	Slide 22: How to Make this Efficient?
	Slide 23: How to Make this Efficient?
	Slide 24: Union Find Data Structure
	Slide 25: UNION FIND != Binary Tree
	Slide 26: Union find – Path compression
	Slide 27: Example of Log* values
	Slide 28: Time complexity analysis of Kruskal’s Algorithm
	Slide 29: Why does Kruskal’s Algorithm work?
	Slide 30: Two basic properties of optimal greedy algorithms
	Slide 31: Greedy algorithms and matroids
	Slide 32: An example of matroid
	Slide 33: An example of a “NON-matroid”
	Slide 34: when not to use greedy algorithm
	Slide 35: More Greedy Algorithm problems
	Slide 36: Greedy: To Apply or not to apply
	Slide 37: Where we are
	Slide 38: Reading ASSIGNMENT

