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WHERE WE ARE

✓ Done

✓ Done

❖ Starting today..



 A technique to build a complete solution by making a 

sequence of “best selection” steps

 Selection depends upon actual problem

 Focus is simply on “what is best step from this point”
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GREEDY METHOD



 Applications of greedy method are very broad.

 Examples:

▪ Sorting

▪ Merging sorted lists

▪ Knapsack

▪ Minimum Spanning Tree (MST)

▪ Hoffman Encoding
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APPLICATIONS



 Select the minimum element

 Move it to the beginning

 Continue doing it for the remaining array

Given array a[1..n] of unsorted numbers

 For i = 1 to n-1

▪ For j = i+1 to n

▪ If (a[i] > a[j]) swap (a[i],  a[j])
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SORTING USING GREEDY METHOD



 1, 5, 4, 19, 2, 90, 3

 Objective: To sort the array

 1, 2, 4, 3, 5, 19, 90

 ================
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INSERTION SORT, EXAMPLE RUN..



 How long does it take to sort using greedy method?

 Is it optimal?
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TIME COMPLEXITY ANALYSIS



 Input: n sorted arrays of lengths 

L[1], L[2],...,L[n] 

 Problem: To merge all the arrays into one array as 

fast as possible.  Which pair to merge every time?

 We observe that:

▪ The final list will be a list of length L[1] + L[2] + … + L[n]

▪ The final list will be same regardless of the sequence in which 

we merge lists

▪ However, the time taken may not be the same.
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MERGING SORTED LISTS



 List 1 of size 7:  {1, 2, 5, 21, 23, 44, 64}

 List 2 of size 12:  {1, 4, 15, 16, 17, 19, 34, 38, 56, 

63, 69, 89}

 Merged list of size 19 (in time 19): 

 {1, 1, 2, 4, 5, 15, 16, 17, 19, 21, 23, 34, 38, 44, 56, 

63, 64, 69, 89}

 You can actually prove that merging can take up to 

n1 + n2 – 1 in the worst case.  O(n1 + n2) time.
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MERGING TWO LISTS



 5 Lists of  sizes: 20M, 25M, 30M, 35M, 40M

 Finally, when it  is  merged, we will have ONE list of size 
150M.

Option 1:  ((((1, 5), 3), 2), 4)

 20 with 40 ➔  60  ( in 60 units of  time)

 60 with 30 ➔  90 (in 90 units)

 {25, 35, 90}

 25 with 90 ➔  115 (in 115 units of  time)

 115 with 35 ➔  150 (in 150 units of  time)

 Total time = 60 + 90 + 115 + 150 = 415M units of t ime

 Optimal: 45 + 65 + 85 + 150 = 345M
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EXAMPLE



 Greedy method: Merge the two shortest remaining 

arrays.

 To Implement, we can keep a data structure, that 

allows us to:

▪ Remove the two smallest arrays

▪ Add a larger array

▪ Keep doing this until we have one array
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MERGING SORTED LISTS

¡ Greedy method: Merge the two shortest remaining 

arrays.

¡ To Implement, we can keep a data structure, that 

allows us to:

§ Remove the two smallest arrays

§ Add a larger array

§ Keep doing this until we have one array
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MERGING SORTED LISTS



 Implement using heap

 Build the original heap – O(n) time

 For i = 1 to n-1

▪ Remove two smallest elements: 2 log (n)

▪ Add a new element log(n) time

 Total time: O(n log n)

▪ Here n is the number of sorted lists.  n has NOTHING to do with 

the number of elements in any of the lists – that is entirely 

outside of our knowledge, we are only given the relative sizes 

of the lists.
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MERGING SORTED LISTS



 Input: A weight capacity C,  and n items of weights W[1:n] and 

monetary value V[1:n]. 

 Problem: Determine which items to take and how much of 

each item so that the total weight is ≤ C,  and the total value 

(profit) is maximized. 

 Formulation of the problem: Let x[i] be the fraction taken 

from item i.  0 ≤ x[i] ≤ 1.  

The weight of the par t taken from item i is x[i]*W[i]

The Corresponding profit is x[i]*V[i] 

 The problem is  then to find the values of the array x[1:n] so 

that x[1]V[1] + x[2]V[2] + .. . + x[n]V[n] is maximized subject to 

the constraint that x[1]W[1] + x[2]W[2] + . ..  + x[n]W[n] ≤ C 
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KNAPSACK PROBLEM



 Given a list of resources, select some of them, such 
that:

▪ Your benefits are maximized

▪ Your cost remains with the budget constraint

 “Cost Benefit Optimization” or “Best Bang for the 
Buck”

 5 Million Visitors for 1 Million $

vs.

 9 Million Visitors for 3 Million $
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KNAPSACK



 Policy 1: Choose the lightest remaining item, and 

take as much of it  as can fit. 

 Policy 2: Choose the most profitable remaining item, 

and take as much of it  as can fit. 

 Policy 3: Choose the item with the highest price per 

unit weight (V[i]/W[i]), and take as much of it as can 

fit. 

 Exercise: Prove by a counter example that Policy 1 

does not guarantee an optimal solution. Same with 

Policy 2. Policy 3 always gives an optimal solution
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3 OPTIONS



Capacity = 7

Solution:

1. All of items {1, 2} and a fraction of item 3

2. But, how to handle this problem instance if we 

cannot take “fractional” portions of items.
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EXAMPLE

Item # 1 2 3 4 5

V ($) 3 5 10 11 9

W (lb) 1 2 5 6 7

V/W 3 2.5 2 1.83 1.28



Capacity = 10

Optimal Solution Value: 5 + 12 + 3 = 20. 
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EXAMPLE 2

Item # 1 2 3 4 5

V ($) 4 5 9 12 7

W (lb) 5 2 6 6 10

V/W 0.8 2.5 1.5 2 0.7



 No, in fact, it can be as bad as you want to make it 

to be.

▪ Example?

 A simple fix can make this algorithm only as bad as 

a ratio of 2.

▪ How?

Algorithms Greedy Algorithms 19

IS GREEDY ALGORITHM FOR INTEGER 

KNAPSACK PROBLEM OPTIMAL?



 Definitions

▪ A spanning tree of a graph is a tree that has all nodes in the 

graph, and all edges come from the graph

▪ Weight of tree = Sum of weights of edges in the tree

 Statement of the MST problem

▪ Input : a weighted connected graph G=(V,E). The weights are 

represented by the 2D array (matrix) W[1:n,1:n], where W[i,j] is 

the weight of edge (i,j). 

▪ Output: Find a minimum-weight spanning tree of G. 
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MINIMUM SPANNING TREE



 Selection Policy: Minimum weighted edge that 

does NOT create a cycle.

 Procedure ComputeMST(in:G, W[1:n,1:n]; out:T)

Sort edges: e[1], e[2],  .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n -1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}
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GREEDY ALGORITHM



Sort edges: e[1], e[2], .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}
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HOW TO MAKE THIS EFFICIENT?



Sort edges: e[1], e[2], .. e[m].  O(m log n)

Initialize counter j = 1   O(1)

Initialize tree T to empty  O(1)

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Then, total time complexity becomes:

m log n + f(n,m) * m + g(n,m) * n
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HOW TO MAKE THIS EFFICIENT?

Suppose this takes f(n,m) time

Suppose this takes g(n,m) time



Each set is marked by a leader – the root 

node

When calling “find” on a set’s member, it 

returns the leader

Leader maintains a rank (or height)

When doing a union, make the tree with 

smaller height (or rank) to be a child of the 

tree with the larger height

Note that this is NOT a binary tree.
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UNION FIND DATA STRUCTURE
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UNION FIND != BINARY TREE



 When doing a find, follow that up by compressing the 
path to the root, by making every node (along the 
way) point to the root.

 This is not easy to prove, but Union Find with Path 
compression, when starting with n nodes and m 
operations, takes O(m log*(n))  time instead of O(m 
log n) time, where the log* function is the iterated 
logarithm (also called the super logarithm) and is an 
extremely slow growing function.

 log*(n)  is defined as follows:

▪ 0, if n <= 1

▪ 1 + log*(log n) if n > 1
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UNION FIND – PATH COMPRESSION



 Log* (10000)

 1 + log* 4

 2 + log* 0.6

 2

 log*(10^(10^10000))

 = 1 + log*(log(10^10^10000))

 = 1 + log*(10^10000)

 = 1 + 1 + log*(log(10^10000))

  = 2 + log*(10000)

 3 + log*(4)

 = 4
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EXAMPLE OF LOG* VALUES



 Using 2 Find operations to check if  adding an edge 

will create a cycle or not.

 When adding an edge, use a Union Operation
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TIME COMPLEXITY ANALYSIS OF KRUSKAL’S  

ALGORITHM



 Proof by contradiction

 Must practice the writing of this.
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WHY DOES KRUSKAL’S  ALGORITHM WORK?



 Optimal Substructure Property: A problem has 

optimal substructure if an optimal solution to the 

problem contains within it, optimal solutions to 

its sub problems.

 Greedy Choice Property: If a local greedy choice is 

made, then an optimal solution including this choice 

is possible.
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TWO BASIC PROPERTIES OF OPTIMAL 

GREEDY ALGORITHMS



 A subset system is  a set E together with a set of subsets of E ,  
called I ,  such that I  is  closed under inclusion.   This  means that if 
X ⊆  Y  and Y ∈  I ,  then X ∈  I .   ( I  is  sometimes referred to as  set of 
independent sets.)   
The “Hereditary Property” .  Subset of a valid solution, is  valid .

 A subset system is  a matroid if it sat isfies the  exchange 
property: I f  i1 and i2 are sets in I  and i1 has fewer elements than 
i2,  then there  exists an e lement e ∈  i2 \ i1 such that i1 ∪  {e} ∈  I .  
The augmentat ion property or  the independent set  exchange 
property.   I f  a larger so lut ion exists , we should be  able to add 
something to the  current solution. ( “Build solution one step at a 
time.”)

 For any subset system (E,I ) ,  the  greedy algorithm solves the  
optimization problem for  (E,I )  if  and only if (E,I )  is  a matroid.
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GREEDY ALGORITHMS AND MATROIDS



 Consider the set of edges of a graph, and set of 

“forests” (forest is a set of edges that doesn’t have a 

cycle)

 Subset of that “forest” is also a “forest”. This 

satisfies the hereditary property. So, this is a subset 

system.

 Consider forest f1, and forest f2. If f1 has less edges 

than f2, then you can certainly add an edge from f2 

to f1 such that f1’ will still be a forest.

 So, the system of forests is a matroid.
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AN EXAMPLE OF MATROID

The set of forests in a graph forms a matroid. It is known as the graphic matroid.



 Consider a graph, and the set of “cliques” (a clique is 

a set of vertices that are all connected to each other)

 A sub-set of clique is also a clique.

 So, clique is a subset system.

 Given a clique K1 and a clique K2, suppose K2 has 

more vertices than K1. It is NOT guaranteed that we 

can add a vertex from K2 to K1 and keep the K1’ as 

a clique.

 Therefore, the clique system is not a matroid.
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AN EXAMPLE OF A “NON -MATROID”



 Prone to overuse

▪ You shouldn’t use this algorithm unless you can prove that the 
solution is optimal.

▪ That is, no points in MT/Final for using greedy algorithm to 
produce a suboptimal solution, where another algorithmic 
technique (such as D&C) would have resulted in an optimal 
solution.

 Why?

▪ Optimality has a “business value”. Suppose you are trying to 
maximize the flights that you can schedule using 3 aircrafts.

▪ Time complexity merely represents a “cost of computation” of 
that schedule.

▪ If one algorithm runs in 1 minute, but schedules only 7 flights, 
and another algorithm runs in 2 hours, but schedules 8 flights, 
which one would you use?
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WHEN NOT TO USE GREEDY ALGORITHM



 Symbol Encoding

 Interval Scheduling
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MORE GREEDY ALGORITHM PROBLEMS



 Chess

 Sorting

 Shortest path computation

 Knapsack
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GREEDY: TO APPLY OR NOT TO APPLY
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WHERE WE ARE

✓ Done

✓ Done

✓ Done



 Greedy

▪ Book – first problem on interval 

scheduling classes

▪ http://en.wikipedia.org/wiki/Huffman_coding

▪ http://www.cs.kent.edu/~dragan/AdvAlg05/GreedyAlg-1x1.pdf

 Dynamic Programming

▪ Dynamic Programming: Book sections 6.1 – 6.4

▪ http://www.yaroslavvb.com/papers/wagner-dynamic.pdf
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READING ASSIGNMENT

Application # 5
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