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WHERE WE ARE

✓ Done

✓ Done

❖ Starting today..



 A technique to build a complete solution by making a 

sequence of “best selection” steps

 Selection depends upon actual problem

 Focus is simply on “what is best step from this point”
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GREEDY METHOD



 Applications of greedy method are very broad.

 Examples:

▪ Sorting

▪ Merging sorted lists

▪ Knapsack

▪ Minimum Spanning Tree (MST)

▪ Hoffman Encoding
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APPLICATIONS



 Select the minimum element

 Move it to the beginning

 Continue doing it for the remaining array

Given array a[1..n] of unsorted numbers

 For i = 1 to n-1

▪ For j = i+1 to n

▪ If (a[i] > a[j]) swap (a[i],  a[j])
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SORTING USING GREEDY METHOD



 1, 5, 4, 19, 2, 90, 3

 Objective: To sort the array

 1, 2, 4, 3, 5, 19, 90

 ================

Algorithms Greedy Algorithms 7

INSERTION SORT, EXAMPLE RUN..



 How long does it take to sort using greedy method?

 Is it optimal?
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TIME COMPLEXITY ANALYSIS



 Input: n sorted arrays of lengths 

L[1], L[2],...,L[n] 

 Problem: To merge all the arrays into one array as 

fast as possible.  Which pair to merge every time?

 We observe that:

▪ The final list will be a list of length L[1] + L[2] + … + L[n]

▪ The final list will be same regardless of the sequence in which 

we merge lists

▪ However, the time taken may not be the same.
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MERGING SORTED LISTS



 List 1 of size 7:  {1, 2, 5, 21, 23, 44, 64}

 List 2 of size 12:  {1, 4, 15, 16, 17, 19, 34, 38, 56, 

63, 69, 89}

 Merged list of size 19 (in time 19): 

 {1, 1, 2, 4, 5, 15, 16, 17, 19, 21, 23, 34, 38, 44, 56, 

63, 64, 69, 89}

 You can actually prove that merging can take up to 

n1 + n2 – 1 in the worst case.  O(n1 + n2) time.
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MERGING TWO LISTS



 5 Lists of  sizes: 20M, 25M, 30M, 35M, 40M

 Finally, when it  is  merged, we will have ONE list of size 
150M.

Option 1:  ((((1, 5), 3), 2), 4)

 20 with 40 ➔  60  ( in 60 units of  time)

 60 with 30 ➔  90 (in 90 units)

 {25, 35, 90}

 25 with 90 ➔  115 (in 115 units of  time)

 115 with 35 ➔  150 (in 150 units of  time)

 Total time = 60 + 90 + 115 + 150 = 415M units of t ime

 Optimal: 45 + 65 + 85 + 150 = 345M
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EXAMPLE



 Greedy method: Merge the two shortest remaining 

arrays.

 To Implement, we can keep a data structure, that 

allows us to:

▪ Remove the two smallest arrays

▪ Add a larger array

▪ Keep doing this until we have one array
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MERGING SORTED LISTS

¡ Greedy method: Merge the two shortest remaining 

arrays.

¡ To Implement, we can keep a data structure, that 

allows us to:

§ Remove the two smallest arrays

§ Add a larger array

§ Keep doing this until we have one array

Algorithms Greedy Algorithms 9

MERGING SORTED LISTS



 Implement using heap

 Build the original heap – O(n) time

 For i = 1 to n-1

▪ Remove two smallest elements: 2 log (n)

▪ Add a new element log(n) time

 Total time: O(n log n)

▪ Here n is the number of sorted lists.  n has NOTHING to do with 

the number of elements in any of the lists – that is entirely 

outside of our knowledge, we are only given the relative sizes 

of the lists.
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MERGING SORTED LISTS



 Input: A weight capacity C,  and n items of weights W[1:n] and 

monetary value V[1:n]. 

 Problem: Determine which items to take and how much of 

each item so that the total weight is ≤ C,  and the total value 

(profit) is maximized. 

 Formulation of the problem: Let x[i] be the fraction taken 

from item i.  0 ≤ x[i] ≤ 1.  

The weight of the par t taken from item i is x[i]*W[i]

The Corresponding profit is x[i]*V[i] 

 The problem is  then to find the values of the array x[1:n] so 

that x[1]V[1] + x[2]V[2] + .. . + x[n]V[n] is maximized subject to 

the constraint that x[1]W[1] + x[2]W[2] + . ..  + x[n]W[n] ≤ C 
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KNAPSACK PROBLEM



 Given a list of resources, select some of them, such 
that:

▪ Your benefits are maximized

▪ Your cost remains with the budget constraint

 “Cost Benefit Optimization” or “Best Bang for the 
Buck”

 5 Million Visitors for 1 Million $

vs.

 9 Million Visitors for 3 Million $
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KNAPSACK



 Policy 1: Choose the lightest remaining item, and 

take as much of it  as can fit. 

 Policy 2: Choose the most profitable remaining item, 

and take as much of it  as can fit. 

 Policy 3: Choose the item with the highest price per 

unit weight (V[i]/W[i]), and take as much of it as can 

fit. 

 Exercise: Prove by a counter example that Policy 1 

does not guarantee an optimal solution. Same with 

Policy 2. Policy 3 always gives an optimal solution
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3 OPTIONS



Capacity = 7

Solution:

1. All of items {1, 2} and a fraction of item 3

2. But, how to handle this problem instance if we 

cannot take “fractional” portions of items.
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EXAMPLE

Item # 1 2 3 4 5

V ($) 3 5 10 11 9

W (lb) 1 2 5 6 7

V/W 3 2.5 2 1.83 1.28



Capacity = 10

Optimal Solution Value: 5 + 12 + 3 = 20. 
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EXAMPLE 2

Item # 1 2 3 4 5

V ($) 4 5 9 12 7

W (lb) 5 2 6 6 10

V/W 0.8 2.5 1.5 2 0.7



 No, in fact, it can be as bad as you want to make it 

to be.

▪ Example?

 A simple fix can make this algorithm only as bad as 

a ratio of 2.

▪ How?
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IS GREEDY ALGORITHM FOR INTEGER 

KNAPSACK PROBLEM OPTIMAL?



 Definitions

▪ A spanning tree of a graph is a tree that has all nodes in the 

graph, and all edges come from the graph

▪ Weight of tree = Sum of weights of edges in the tree

 Statement of the MST problem

▪ Input : a weighted connected graph G=(V,E). The weights are 

represented by the 2D array (matrix) W[1:n,1:n], where W[i,j] is 

the weight of edge (i,j). 

▪ Output: Find a minimum-weight spanning tree of G. 
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MINIMUM SPANNING TREE



 Selection Policy: Minimum weighted edge that 

does NOT create a cycle.

 Procedure ComputeMST(in:G, W[1:n,1:n]; out:T)

Sort edges: e[1], e[2],  .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n -1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}
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GREEDY ALGORITHM



Sort edges: e[1], e[2], .. e[m].

Initialize counter j = 1

Initialize tree T to empty

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}
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HOW TO MAKE THIS EFFICIENT?



Sort edges: e[1], e[2], .. e[m].  O(m log n)

Initialize counter j = 1   O(1)

Initialize tree T to empty  O(1)

While (number of edges in Tree < n-1) {

Does adding an edge e[j] create a cycle?

If No, add edge e[j] to tree T

}

Then, total time complexity becomes:

m log n + f(n,m) * m + g(n,m) * n

Algorithms Greedy Algorithms 23

HOW TO MAKE THIS EFFICIENT?

Suppose this takes f(n,m) time

Suppose this takes g(n,m) time



Each set is marked by a leader – the root 

node

When calling “find” on a set’s member, it 

returns the leader

Leader maintains a rank (or height)

When doing a union, make the tree with 

smaller height (or rank) to be a child of the 

tree with the larger height

Note that this is NOT a binary tree.
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UNION FIND DATA STRUCTURE



Algorithms Greedy Algorithms 25

UNION FIND != BINARY TREE



 When doing a find, follow that up by compressing the 
path to the root, by making every node (along the 
way) point to the root.

 This is not easy to prove, but Union Find with Path 
compression, when starting with n nodes and m 
operations, takes O(m log*(n))  time instead of O(m 
log n) time, where the log* function is the iterated 
logarithm (also called the super logarithm) and is an 
extremely slow growing function.

 log*(n)  is defined as follows:

▪ 0, if n <= 1

▪ 1 + log*(log n) if n > 1
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UNION FIND – PATH COMPRESSION



 Log* (10000)

 1 + log* 4

 2 + log* 0.6

 2

 log*(10^(10^10000))

 = 1 + log*(log(10^10^10000))

 = 1 + log*(10^10000)

 = 1 + 1 + log*(log(10^10000))

  = 2 + log*(10000)

 3 + log*(4)

 = 4
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EXAMPLE OF LOG* VALUES



 Using 2 Find operations to check if  adding an edge 

will create a cycle or not.

 When adding an edge, use a Union Operation
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TIME COMPLEXITY ANALYSIS OF KRUSKAL’S  

ALGORITHM



 Proof by contradiction

 Must practice the writing of this.
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WHY DOES KRUSKAL’S  ALGORITHM WORK?



 Optimal Substructure Property: A problem has 

optimal substructure if an optimal solution to the 

problem contains within it, optimal solutions to 

its sub problems.

 Greedy Choice Property: If a local greedy choice is 

made, then an optimal solution including this choice 

is possible.
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TWO BASIC PROPERTIES OF OPTIMAL 

GREEDY ALGORITHMS



 A subset system is  a set E together with a set of subsets of E ,  
called I ,  such that I  is  closed under inclusion.   This  means that if 
X ⊆  Y  and Y ∈  I ,  then X ∈  I .   ( I  is  sometimes referred to as  set of 
independent sets.)   
The “Hereditary Property” .  Subset of a valid solution, is  valid .

 A subset system is  a matroid if it sat isfies the  exchange 
property: I f  i1 and i2 are sets in I  and i1 has fewer elements than 
i2,  then there  exists an e lement e ∈  i2 \ i1 such that i1 ∪  {e} ∈  I .  
The augmentat ion property or  the independent set  exchange 
property.   I f  a larger so lut ion exists , we should be  able to add 
something to the  current solution. ( “Build solution one step at a 
time.”)

 For any subset system (E,I ) ,  the  greedy algorithm solves the  
optimization problem for  (E,I )  if  and only if (E,I )  is  a matroid.
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GREEDY ALGORITHMS AND MATROIDS



 Consider the set of edges of a graph, and set of 

“forests” (forest is a set of edges that doesn’t have a 

cycle)

 Subset of that “forest” is also a “forest”. This 

satisfies the hereditary property. So, this is a subset 

system.

 Consider forest f1, and forest f2. If f1 has less edges 

than f2, then you can certainly add an edge from f2 

to f1 such that f1’ will still be a forest.

 So, the system of forests is a matroid.
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AN EXAMPLE OF MATROID

The set of forests in a graph forms a matroid. It is known as the graphic matroid.



 Consider a graph, and the set of “cliques” (a clique is 

a set of vertices that are all connected to each other)

 A sub-set of clique is also a clique.

 So, clique is a subset system.

 Given a clique K1 and a clique K2, suppose K2 has 

more vertices than K1. It is NOT guaranteed that we 

can add a vertex from K2 to K1 and keep the K1’ as 

a clique.

 Therefore, the clique system is not a matroid.
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AN EXAMPLE OF A “NON -MATROID”



 Prone to overuse

▪ You shouldn’t use this algorithm unless you can prove that the 
solution is optimal.

▪ That is, no points in MT/Final for using greedy algorithm to 
produce a suboptimal solution, where another algorithmic 
technique (such as D&C) would have resulted in an optimal 
solution.

 Why?

▪ Optimality has a “business value”. Suppose you are trying to 
maximize the flights that you can schedule using 3 aircrafts.

▪ Time complexity merely represents a “cost of computation” of 
that schedule.

▪ If one algorithm runs in 1 minute, but schedules only 7 flights, 
and another algorithm runs in 2 hours, but schedules 8 flights, 
which one would you use?
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WHEN NOT TO USE GREEDY ALGORITHM



 Symbol Encoding

 Interval Scheduling
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MORE GREEDY ALGORITHM PROBLEMS



 Chess

 Sorting

 Shortest path computation

 Knapsack
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GREEDY: TO APPLY OR NOT TO APPLY
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WHERE WE ARE

✓ Done

✓ Done

✓ Done



 Greedy

▪ Book – first problem on interval 

scheduling classes

▪ http://en.wikipedia.org/wiki/Huffman_coding

▪ http://www.cs.kent.edu/~dragan/AdvAlg05/GreedyAlg-1x1.pdf

 Dynamic Programming

▪ Dynamic Programming: Book sections 6.1 – 6.4

▪ http://www.yaroslavvb.com/papers/wagner-dynamic.pdf
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READING ASSIGNMENT

Application # 5
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