
CS 6511: Artificial Intelligence

Search

Instructor: Prof. Amrinder Arora

The George Washington University

AI / 6511 / 4511

Introduction

What is AI

Env. and Agent
Types

Making
Decisions

Fast Search

Constraint
Satisfaction

Adversarial
Search

Reasoning
under

Uncertainty

Bayes’ Nets

Decision
Theory

Markov
Decision

Processes

Course Outline

Other AI Topics (Not
included in this class):
• Robotics
• NLP
• Machine Learning
• Big Data
• AR/VR
• Speech Synthesis

Suppose you have two jugs, one capable of holding 5 cups, and
one capable of holding 8 cups.

 [The jugs are irregularly shaped and without markings, so you
can't determine how much water is in either jug unless it is
completely full or completely empty.]

 You also have a faucet, and as much water as you'd like.

 Can you get 3 cups?

 Can you obtain 1 cup? 2 cups? 4 cups? 6 cups? 7 cups?

Algorithms Graph Traversal Techniques 3

Puzzles

Where can we go from here:

(x,y) →

a. (0,y) / (x,0)  Empty first/second

b. (5,y) / (x,8)  Fill first/second

c. (5,x+y-5)  Second to First, x+y > 5

d. (x+y,0)  Second to First

e. (x+y-8,8)  First to Second, x+y > 8

f. (0,x+y)  First to Second

Algorithms Graph Traversal Techniques 4

Puzzles (cont.)

(0,0)
1. →(0,8) // b
2. →(5,3) // c
3. →(0,3) // a
4. →(3,0) // d
5. →(3,8) // a
6. →(5,6) // c
7. →(0,6) // a
8. →(5,1) // c
9. →(0,1) // a

Algorithms Graph Traversal Techniques 5

PUZZLES (cont.)

0,0

0,8

Tree Edge

5,3

0,3

3,0

Back Edge

Solution

[5,8]
▪ 0,0
▪ 0,8
▪ 5,3
▪ 0,3
▪ 3,0
▪ 3,8
▪ 5,6
▪ 0,6
▪ 5,1
▪ 0,1

Problem, to Avoid!

[5,8]
▪ 0,0
▪ 5,0
▪ 5,8
▪ 0,8
▪ 0,0
▪ 5,0
▪ 5,8
▪ 0,8
▪ 0,0
▪ 5,0
▪ 5,8
▪ 0,8

Algorithms Graph Traversal Techniques 6

Traversal problem

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

AI (4511/6511) 7

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

▪ Start state:

▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?

AI (4511/6511) 8

What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

AI (4511/6511) 9

State Space Sizes?

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120 x 230 x 12 x 12 x 4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120 x 230

AI (4511/6511) 10

Search Graphs and Search Trees

AI (4511/6511) 11

State Space Graphs (Search Graphs)

▪ State space graph (Search Graph for Short): A
mathematical representation of a search
problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

AI (4511/6511) 12

Search Graphs

S

G

d

b

p
q

c

e

h

a

f

r

Tiny search graph for a tiny
search problem

AI (4511/6511) 13

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

AI (4511/6511) 14

Search Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in the
search tree is an

entire PATH in the
state space graph.

Search TreeSearch Graph

AI (4511/6511) 15

“Algorithms that forget their history are doomed to
repeat it.”

AI (4511/6511) 16

Graph Search vs. Tree Search

▪ There is always a lot of confusion about this concept. (And the
naming does not help!)

▪ The underlying problem is always a graph – So, the difference is
not whether the problem is a tree (a special kind of graph), or a
general graph!

▪ The distinction instead is the structure that we are maintaining –
tree, or a graph.

▪ This is done using a closed list to only add the nodes that are “new”.

https://ai.stackexchange.com/questions/6426/what-is-the-difference-between-tree-search-and-graph-search

AI (4511/6511) 17

https://ai.stackexchange.com/questions/6426/what-is-the-difference-between-tree-search-and-graph-search

Tree Search

AI (4511/6511) 18

Search Example: Romania

AI (4511/6511) 19

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible

AI (4511/6511) 20

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

AI (4511/6511) 21

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

AI (4511/6511) 22

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

AI (4511/6511) 23

We do NOT recognize that the

node “a” has been seen

before. In fact, we have no

concept of “memory” so, we

don’t even know that we have
not seen the node a before.

We do however not loop in the

same path, as we do have the

LIFO stack, and we don’t add
the same node to the LIFO

stack over and over again.

(Example; We recognize the

node S, because it is currently

in the LIFO stack, and we don’t
run into infinite loops, while we

do have some repetitions.)
S

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

AI (4511/6511) 24

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?

▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent cycles

▪ Is it optimal?

▪ No, it finds the “leftmost” solution, regardless of depth or cost

AI (4511/6511) 25

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

AI (4511/6511) 26

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?

▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

AI (4511/6511) 27

Quiz: DFS vs. BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

AI (4511/6511) 28

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest
level searched, so not so bad!

AI (4511/6511) 29

Let’s Incorporate Edge Costs into Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

AI (4511/6511) 30

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

AI (4511/6511) 31

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?

▪ Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c  3

c  2

c  1

AI (4511/6511) 32

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

AI (4511/6511) 33

The “One” Queue

▪ All these search algorithms are the same
except for fringe strategies

▪ Conceptually, all fringes are priority queues (i.e.,
collections of nodes with attached priorities)

▪ Practically, for DFS and BFS, you can avoid the
log(n) overhead from an actual priority queue,
by using stacks and queues

▪ Can even code one implementation that takes a
variable queuing object

AI (4511/6511) 34

Some More Toy Problems

▪ N Puzzle

▪ Knuth’s Factorial, Square Root and Floor

▪ Start with 3 and get to 4 by applying these operations.

▪ 3! = 6

▪ 6! = 720

▪ Sqrt(720) = 26.7

▪ Floor = 26

▪ Sqrt = 5.x

▪ Floor = 5

▪ Etc..

AI (4511/6511) 35

AI / 6511 / 4511

Introduction

What is AI

Env. and Agent
Types

Making
Decisions

Fast Search

Constraint
Satisfaction

Adversarial
Search

Reasoning
under

Uncertainty

Bayes’ Nets

Decision
Theory

Markov
Decision

Processes

Course Outline

Other AI Topics (Not
included in this class):
• Robotics
• NLP
• Machine Learning
• Big Data
• AR/VR
• Speech Synthesis

	Slide 1: CS 6511: Artificial Intelligence
	Slide 2: Course Outline
	Slide 3: Puzzles
	Slide 4: Puzzles (cont.)
	Slide 5: PUZZLES (cont.)
	Slide 6: Traversal problem
	Slide 7: Search Problems
	Slide 8: Example: Traveling in Romania
	Slide 9: What’s in a State Space?
	Slide 10: State Space Sizes?
	Slide 11: Search Graphs and Search Trees
	Slide 12: State Space Graphs (Search Graphs)
	Slide 13: Search Graphs
	Slide 14: Search Trees
	Slide 15: Search Graphs vs. Search Trees
	Slide 16
	Slide 17: Graph Search vs. Tree Search
	Slide 18: Tree Search
	Slide 19: Search Example: Romania
	Slide 20: Searching with a Search Tree
	Slide 21: General Tree Search
	Slide 22: Example: Tree Search
	Slide 23: Depth-First Search
	Slide 24: Search Algorithm Properties
	Slide 25: Depth-First Search (DFS) Properties
	Slide 26: Breadth-First Search
	Slide 27: Breadth-First Search (BFS) Properties
	Slide 28: Quiz: DFS vs. BFS
	Slide 29: Iterative Deepening
	Slide 30: Let’s Incorporate Edge Costs into Search
	Slide 31: Uniform Cost Search
	Slide 32: Uniform Cost Search (UCS) Properties
	Slide 33: Uniform Cost Issues
	Slide 34: The “One” Queue
	Slide 35: Some More Toy Problems
	Slide 36: Course Outline

