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Suppose you have two jugs, one capable of holding 5 cups, and 
one capable of holding 8 cups. 

 [The jugs are irregularly shaped and without markings, so you 
can't determine how much water is in either jug unless it is 
completely full or completely empty.]

 You also have a faucet, and as much water as you'd like.

 Can you get 3 cups?

 Can you obtain 1 cup? 2 cups? 4 cups? 6 cups? 7 cups? 
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Puzzles



Where can we go from here:

(x,y) →

a. (0,y) / (x,0)  Empty first/second

b. (5,y) / (x,8)  Fill first/second

c. (5,x+y-5)  Second to First, x+y > 5

d. (x+y,0)   Second to First

e. (x+y-8,8)   First to Second, x+y > 8

f. (0,x+y)   First to Second
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Puzzles (cont.)



(0,0) 
1. →(0,8)  // b
2. →(5,3)  // c
3. →(0,3)  // a
4. →(3,0)  // d
5. →(3,8)  // a
6. →(5,6)  // c
7. →(0,6)  // a
8. →(5,1)  // c
9. →(0,1)  // a
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PUZZLES (cont.)
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Solution

[5,8]
▪ 0,0
▪ 0,8
▪ 5,3
▪ 0,3
▪ 3,0
▪ 3,8
▪ 5,6
▪ 0,6
▪ 5,1
▪ 0,1

Problem, to Avoid!

[5,8]
▪ 0,0
▪ 5,0
▪ 5,8
▪ 0,8
▪ 0,0
▪ 5,0
▪ 5,8
▪ 0,8
▪ 0,0
▪ 5,0
▪ 5,8
▪ 0,8
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Traversal problem



Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0
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Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with 

cost = distance

▪ Start state:

▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?
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What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location 
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location 
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)
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State Space Sizes?

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120 x 230 x 12 x 12 x 4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120 x 230
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Search Graphs and Search Trees
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State Space Graphs (Search Graphs)

▪ State space graph (Search Graph for Short): A 
mathematical representation of a search 
problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only 
once!

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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Search Graphs
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Tiny search graph for a tiny 
search problem
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Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures
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Search Graphs vs. Search Trees
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We construct both 
on demand – and 
we construct as 
little as possible.

Each NODE in the 
search tree is an 

entire PATH in the 
state space graph.

Search TreeSearch Graph
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“Algorithms that forget their history are doomed to 
repeat it.”
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Graph Search vs. Tree Search

▪ There is always a lot of confusion about this concept. (And the 
naming does not help!)

▪ The underlying problem is always a graph – So, the difference is 
not whether the problem is a tree (a special kind of graph), or a 
general graph!

▪ The distinction instead is the structure that we are maintaining – 
tree, or a graph. 

▪ This is done using a closed list to only add the nodes that are “new”.

https://ai.stackexchange.com/questions/6426/what-is-the-difference-between-tree-search-and-graph-search 
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https://ai.stackexchange.com/questions/6426/what-is-the-difference-between-tree-search-and-graph-search


Tree Search
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Search Example: Romania
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Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible
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General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

AI (4511/6511) 21



Example: Tree Search
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Depth-First Search
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Strategy: expand a 
deepest node first

Implementation: 
Fringe is a LIFO stack
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We do NOT recognize that the 

node “a” has been seen 

before. In fact, we have no 

concept of “memory” so, we 

don’t even know that we have 
not seen the node a before.

We do however not loop in the 

same path, as we do have the 

LIFO stack, and we don’t add 
the same node to the LIFO 

stack over and over again. 

(Example; We recognize the 

node S, because it is currently 

in the LIFO stack, and we don’t 
run into infinite loops, while we 

do have some repetitions.)
S



Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers
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Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?

▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent cycles

▪ Is it optimal?

▪ No, it finds the “leftmost” solution, regardless of depth or cost
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Breadth-First Search
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Tiers

Strategy: expand a 
shallowest node first

Implementation: Fringe 
is a FIFO queue
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Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?

▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes
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Quiz: DFS vs. BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?
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Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages

▪ Run a DFS with depth limit 1.  If no solution…

▪ Run a DFS with depth limit 2.  If no solution…

▪ Run a DFS with depth limit 3.  …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest 
level searched, so not so bad!
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Let’s Incorporate Edge Costs into Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.  We will now cover
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the 
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?

▪ Assuming best solution has a finite cost and minimum arc cost 
is positive, yes!

▪ Is it optimal?
▪ Yes!  (Proof next lecture via A*)

b

C*/  “tiers”
c  3

c  2

c  1
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Uniform Cost Issues

▪ Remember: UCS explores increasing cost 
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1
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The “One” Queue

▪ All these search algorithms are the same 
except for fringe strategies

▪ Conceptually, all fringes are priority queues (i.e., 
collections of nodes with attached priorities)

▪ Practically, for DFS and BFS, you can avoid the 
log(n) overhead from an actual priority queue, 
by using stacks and queues

▪ Can even code one implementation that takes a 
variable queuing object
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Some More Toy Problems

▪ N Puzzle

▪ Knuth’s Factorial, Square Root and Floor

▪ Start with 3 and get to 4 by applying these operations.

▪ 3! = 6

▪ 6! = 720

▪ Sqrt(720) = 26.7

▪ Floor = 26

▪ Sqrt = 5.x

▪ Floor = 5

▪ Etc..
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