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Other AI Topics (Not 
included in this class):
• Robotics
• NLP
• Machine Learning
• Big Data
• AR/VR
• Speech Synthesis
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Key Learning Objectives

▪ Informed Search

▪ Concept of “Direction”

▪ In physical space

▪ In logical solution space

▪ Heuristics

▪ Greedy Search

▪ A* Search 

▪ Graph Search
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Recap: Search

▪ Search problem:
▪ States (configurations of the world)

▪ Actions and costs

▪ Successor function (world dynamics)

▪ Start state and goal test

▪ Search tree:
▪ Nodes: represent plans for reaching states

▪ Plans have costs (sum of action costs)

▪ Search algorithm:
▪ Systematically builds a search tree

▪ Chooses an ordering of the fringe (unexplored nodes)

▪ Optimal: finds least-cost plans
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▪ Which is smaller:

▪ 4 is the branching factor (b): number of successors per node

▪ m is the depth (possibly max depth)

▪ If m is 10: 40 (DFS) or 4^10 (BFS)

▪ If m is 20: 80 (DFS) or 4^20 (BFS)

▪ If m is 30: 120 (DFS) or 4^30 (BFS)
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Example: Pancake Problem

Cost: Number of pancakes flipped
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Example: Pancake Problem
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▪ 8, 5, 4, 10, 1, 2, 7, 3, 9, 6

▪ 10, 4, 5, 8, …

▪ 6, 9, 3, 7, 2, 1, 8, 5, 4, 10

▪ 9, 6, 3, 7, 2, 1, 8, 5, 4, 10

▪ 4, 5, 8, 1, 2, 7, 3, 6, 9, 10
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Longest “Shortest” Path

▪ Can be confusing at times! Let us make sure we understand it.

▪ Concept is also used in graphs

▪ Shortest path between each pair = distance between that pair

▪ Longest distances across all pairs = diameter of the graph

▪ In other words, it is the longest distance, when taken over all pairs.

▪ f(sigma) is the corresponding “distance”

▪ f(n) is the corresponding “diameter”

▪ Their result, from 1978, is that f(n) <= 5n/3 + 5/3.

▪ Best result, in 2011: 18/11 n
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Example: Pancake Problem
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General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

AI-4511/6511 GWU 15

You know exactly 

where you came 

from and how you 

got there, but you 

have no idea where 

you’re going.  But, 

you’ll know it when 

you see it.



Uninformed Search

▪ Uninformed search is structured search, but does not have any 
way of knowing which way to go.  It is an improvement in terms 
of endless looping, but not intelligent.
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Uniform Cost Search 

▪ Strategy: expand lowest path cost (BFS, but 
considers weights/costs of edges)

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location Start Goal

…

c  3

c  2

c  1
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Informed Search

▪ Concept of “direction”

▪ Which node may be better to explore (which one is estimated to 
be closer to a goal node)
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DIRECTION (WHICH NODE TO EXPAND)

Key Idea
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How do we use Direction/Information

▪ We “hear” the direction where the sound is coming from, based 
on the distance (the time) it takes for the sound to reach the two 
ears.

▪ “Studies of barn owls offer insight into just how the brain combines 
acoustic signals from two sides of the head into a single spatial 
perception”

▪ https://www.scientificamerican.com/article/listening-with-two-ears-
2006-09/
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Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for 
pathing

10

5

11.2
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Heuristic Function: Example 1

Heuristic: the number of the largest pancake that is still out of place
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Heuristic Function: Example 2

▪ Euclidean (Flying) distance
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Greedy (Informed) Search

▪ Strategy: expand a node that you think is 
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for 

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b
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Comparing UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n)

▪ Greedy orders by goal proximity, or forward cost  h(n)
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Pros and Cons (and What to Do)

▪ Neither approach is bad

▪ UCS doesn’t take direction into account

▪ Greedy doesn’t take the past covered distance into account.

▪ We should combine the two ideas.
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A* - NEW ALGORITHM

Key Idea
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A*: Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n)

▪ Greedy orders by goal proximity, or forward cost  h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

▪ Why is this a good strategy?
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ADMISSIBILITY (OF HEURISTICS)

Key Idea
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Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where               is the true cost to a nearest goal, that is, h(n) does 
not over estimate the cost/distance.

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved 
in using A* in practice.

4
15
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Consistent Heuristics vs. Admissible Heuristics

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

  h(A) ≤ cost(A to B) + h(B)

  d(A,G) <=  c(A,B) + d(B,G)

▪ Consistent = Monotone

▪ All consistent heuristics are admissible.

▪ Reverse is not true.

▪ That means, there can be heuristics that ARE admissible, but ARE NOT 
consistent.
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When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal
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OPTIMALITY OF A* TREE SEARCH

Key Idea
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Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h(x) is an admissible heuristic

Claim:

▪ A will exit the fringe before B

…
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Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the 
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal
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Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the 
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…
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Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the 
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3.  n expands before B

▪ All ancestors of A expand before B

▪ A expands before B

▪ A* search is optimal

…
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PROPERTIES OF A* TREE SEARCH
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Properties of A*

…
b

…
b

Uniform-Cost A*
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UCS vs. A* Contours

▪ Uniform-cost expands equally in all 
“directions”

▪ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal
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Comparison

Greedy Uniform Cost A*
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A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …

AI-4511/6511 GWU 44



Creating Heuristics

▪ The main point of improvement!!
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Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up 
with admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new 
actions are available

▪ Inadmissible heuristics are often useful too

15
366
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Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ How many successors from the start state?

▪ What should the costs be?

Start State Goal StateActions
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8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) =

▪ This is a relaxed-problem heuristic

8

Average nodes expanded when 
the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A* TILES 13 39 227

Start State Goal State
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8 Puzzle II

▪ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded when the 
optimal path has…

…4 steps …8 steps …12 steps

A* TILES 13 39 227

A* MANHATTAN 12 25 73

Start State Goal State
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8 Puzzle III

▪ How about using the actual cost as a heuristic?

▪ Would it be admissible?

▪ Would we save on nodes expanded?

▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node

▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually 
do more work per node to compute the heuristic itself
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Semi-Lattice of Heuristics
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Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics

▪ Bottom of lattice is the zero heuristic (what 
does this give us?)

▪ Top of lattice is the exact heuristic
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8 Puzzle, Beyond Manhattan Distance

▪ Even if using A* (or other algorithms such as IDA*) along with a 
heuristic such as Manhattan Distance, larger puzzles, such as 24 
puzzles are still untenable.

▪ This is because Manhattan Distance does not take into account 
linear conflicts. For example:
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• Manhattan Distance is 4, but tiles 1 and 3 
interfere with each other.

• [Hansson, Mayer, and Yung, 1991] show that 
given two tiles in their goal row, but reversed in 
position, additional vertical moves can be added 
to Manhattan distance.

• So, 4 + 2 = 6 in this case.



8 Puzzle, Beyond Manhattan Distance

▪ So, using A* and using the New Heuristic (Manhattan + Vertical 
Moves), larger puzzles, such as 24 puzzles are still untenable.

▪ We need to use a pattern database.

▪ A pattern database is a complete set of such positions, with 
associated number of moves 

▪ A 7-tile pattern database for the Fifteen Puzzle contains 519 
million entries.
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Using Pattern Database and Semi-Lattice

▪ From a given 15-puzzle we may recognize two different patterns 
using two different sets of tiles.

▪ If one pattern suggests a distance of 20 and the other pattern 
suggests a distance of 30, we can take the maximum (30).
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GRAPH SEARCH

That magical time, when you realize, I have been here!
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▪ Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph

Tree Search: Extra Work!
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Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

▪ Idea: never expand a state twice

▪ How to implement: 

▪ Tree search + set of expanded states (“closed set”)

▪ Expand the search tree node-by-node, but…

▪ Before expanding a node, check to make sure its state has never been 
expanded before

▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness?  Why/why not?

▪ How about optimality?
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A* Graph Search Gone Wrong?
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Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

  h(A) ≤ actual cost from A to G

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

  h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases

   h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal
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h=4 h=1

1
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Optimality of A* Graph Search

▪ Why do we need consistency in this case?

▪ Why is admissibility not sufficient?
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Optimality of A* Graph Search

▪ Sketch: consider what A* does with a 
consistent heuristic:

▪ Fact 1: In tree search, A* expands nodes in 
increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach 
s optimally are expanded before nodes 
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f  3

f  2

f  1
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Optimality of A* Graph Search

Proof:

▪ New possible problem: some n on path to G* 
isn’t in queue when we need it, because some 
worse n’ for the same state dequeued and 
expanded first (disaster!)

▪ Take the highest such n in tree

▪ Let p be the ancestor of n that was on the 
queue when n’ was popped

▪ f(p) < f(n) because of consistency

▪ f(n) < f(n’) because n’ is suboptimal

▪ p would have been expanded before n’

▪ Contradiction!
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Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics 
tend to be consistent, especially if from 
relaxed problems
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A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems
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Tree Search Pseudo-Code
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Graph Search Pseudo-Code
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10 AI Commandments

1. “No model is perfect, but some models are useful”
General AI and ML

2. “The algorithms that forget their history are doomed to repeat it.”
Graph Search vs. Tree Search

3. “Ask not what the state can do for you, ask what you can do in that 
state.”
Successor function concept in search problems

4. “Your direction is more important than your speed”
Informed search vs. uninformed search
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WE JUST WRAPPED UP INFORMED SEARCH!

IT SEEMS, WE HAVE FOUND THE DIRECTION IN 

LIFE.

That’s It!
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