
CS 6511: Artificial Intelligence

Informed Search

Amrinder Arora

[Original version of these slides was created by Dan Klein and Pieter Abbeel for Intro to AI at UC Berkeley. http://ai.berkeley.edu]

http://ai.berkeley.edu/

AI / 6511 /
4511

Introduction

What is AI

Env. and Agent
Types

Making
Decisions

Uninformed
Search

Informed
Search

Constraint
Satisfaction

Adversarial
Search

Reasoning
under

Uncertainty

Bayes’ Nets

Decision
Theory

Markov
Decision

Processes

Course Outline

Other AI Topics (Not
included in this class):
• Robotics
• NLP
• Machine Learning
• Big Data
• AR/VR
• Speech Synthesis

AI-4511/6511 GWU 2

Key Learning Objectives

▪ Informed Search

▪ Concept of “Direction”

▪ In physical space

▪ In logical solution space

▪ Heuristics

▪ Greedy Search

▪ A* Search

▪ Graph Search

AI-4511/6511 GWU 3

Recap: Search

▪ Search problem:
▪ States (configurations of the world)

▪ Actions and costs

▪ Successor function (world dynamics)

▪ Start state and goal test

▪ Search tree:
▪ Nodes: represent plans for reaching states

▪ Plans have costs (sum of action costs)

▪ Search algorithm:
▪ Systematically builds a search tree

▪ Chooses an ordering of the fringe (unexplored nodes)

▪ Optimal: finds least-cost plans

AI-4511/6511 GWU 4

▪ Which is smaller:

▪ 4 is the branching factor (b): number of successors per node

▪ m is the depth (possibly max depth)

▪ If m is 10: 40 (DFS) or 4^10 (BFS)

▪ If m is 20: 80 (DFS) or 4^20 (BFS)

▪ If m is 30: 120 (DFS) or 4^30 (BFS)

AI-4511/6511 GWU 5

Example: Pancake Problem

Cost: Number of pancakes flipped

AI-4511/6511 GWU 6

Example Run

▪ 4

▪ 3

▪ 1

▪ 5

▪ 2

AI-4511/6511 GWU 7

▪ 2

▪ 5

▪ 1

▪ 3

▪ 4

▪ 5

▪ 3

▪ 1

▪ 5

▪ 2

▪ 4

▪ 4

▪ 5

▪ 1

▪ 3

▪ 2

▪ 4

▪ 3

▪ 4

▪ 2

▪ 3

▪ 1

▪ 5

▪ 5

▪ 1

▪ 3

▪ 2

▪ 4

▪ 5

▪ 4

▪ 2

▪ 3

▪ 1

▪ 4

▪ 5

▪ 3

▪ 3

▪ 2

▪ 1

▪ 4

▪ 5

▪ 2

Total cost = 29

▪ 1

▪ 2

▪ 3

▪ 4

▪ 5

▪ 3

Example Run

▪ 1

▪ 2

▪ 3

▪ 4

▪ 5

AI-4511/6511 GWU 8Total cost = 0

▪ 1

▪ 2

▪ 3

▪ 4

▪ 5

▪ 0

Example Run

▪ 5

▪ 4

▪ 3

▪ 2

▪ 1

AI-4511/6511 GWU 9Total cost = 5

▪ 1

▪ 2

▪ 3

▪ 4

▪ 5

▪ 5

Example Run

▪ 4

▪ 3

▪ 1

▪ 5

▪ 2

AI-4511/6511 GWU 10

▪ 2

▪ 5

▪ 1

▪ 3

▪ 4

▪ 5

▪ 3

▪ 1

▪ 5

▪ 2

▪ 4

▪ 4

▪ 5

▪ 1

▪ 3

▪ 2

▪ 4

▪ 3

▪ 4

▪ 2

▪ 3

▪ 1

▪ 5

▪ 5

▪ 1

▪ 3

▪ 2

▪ 4

▪ 5

▪ 4

▪ 2

▪ 3

▪ 1

▪ 4

▪ 5

▪ 3

▪ 3

▪ 2

▪ 1

▪ 4

▪ 5

▪ 2

Total cost = 29

▪ 1

▪ 2

▪ 3

▪ 4

▪ 5

▪ 3

Example: Pancake Problem

AI-4511/6511 GWU 11

▪ 8, 5, 4, 10, 1, 2, 7, 3, 9, 6

▪ 10, 4, 5, 8, …

▪ 6, 9, 3, 7, 2, 1, 8, 5, 4, 10

▪ 9, 6, 3, 7, 2, 1, 8, 5, 4, 10

▪ 4, 5, 8, 1, 2, 7, 3, 6, 9, 10

AI-4511/6511 GWU 12

Longest “Shortest” Path

▪ Can be confusing at times! Let us make sure we understand it.

▪ Concept is also used in graphs

▪ Shortest path between each pair = distance between that pair

▪ Longest distances across all pairs = diameter of the graph

▪ In other words, it is the longest distance, when taken over all pairs.

▪ f(sigma) is the corresponding “distance”

▪ f(n) is the corresponding “diameter”

▪ Their result, from 1978, is that f(n) <= 5n/3 + 5/3.

▪ Best result, in 2011: 18/11 n
AI-4511/6511 GWU 13

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3

4

3

4

2

AI-4511/6511 GWU 14

General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

AI-4511/6511 GWU 15

You know exactly

where you came

from and how you

got there, but you

have no idea where

you’re going. But,

you’ll know it when

you see it.

Uninformed Search

▪ Uninformed search is structured search, but does not have any
way of knowing which way to go. It is an improvement in terms
of endless looping, but not intelligent.

AI-4511/6511 GWU 16

Uniform Cost Search

▪ Strategy: expand lowest path cost (BFS, but
considers weights/costs of edges)

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location Start Goal

…

c 3

c 2

c 1

AI-4511/6511 GWU 17

Informed Search

▪ Concept of “direction”

▪ Which node may be better to explore (which one is estimated to
be closer to a goal node)

AI-4511/6511 GWU 18

DIRECTION (WHICH NODE TO EXPAND)

Key Idea

AI-4511/6511 GWU 19

How do we use Direction/Information

▪ We “hear” the direction where the sound is coming from, based
on the distance (the time) it takes for the sound to reach the two
ears.

▪ “Studies of barn owls offer insight into just how the brain combines
acoustic signals from two sides of the head into a single spatial
perception”

▪ https://www.scientificamerican.com/article/listening-with-two-ears-
2006-09/

AI-4511/6511 GWU 20

https://www.scientificamerican.com/article/listening-with-two-ears-2006-09/
https://www.scientificamerican.com/article/listening-with-two-ears-2006-09/

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for
pathing

10

5

11.2

AI-4511/6511 GWU 21

Heuristic Function: Example 1

Heuristic: the number of the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

AI-4511/6511 GWU 22

Heuristic Function: Example 2

▪ Euclidean (Flying) distance

AI-4511/6511 GWU 23

Greedy (Informed) Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

AI-4511/6511 GWU 24

AI-4511/6511 GWU 25

2
2

5

10

10

10

10 10
10

h = 3

h = 3

h = 3

h = 3

h = 3

h = 3

h = 5

Comparing UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1
1

2

h=6
h=0

c

h=7

3

e h=1
1

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

AI-4511/6511 GWU 26

Pros and Cons (and What to Do)

▪ Neither approach is bad

▪ UCS doesn’t take direction into account

▪ Greedy doesn’t take the past covered distance into account.

▪ We should combine the two ideas.

AI-4511/6511 GWU 27

A* - NEW ALGORITHM

Key Idea

AI-4511/6511 GWU 28

A*: Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

▪ Why is this a good strategy?

AI-4511/6511 GWU 29

ADMISSIBILITY (OF HEURISTICS)

Key Idea

AI-4511/6511 GWU 30

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal, that is, h(n) does
not over estimate the cost/distance.

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

AI-4511/6511 GWU 31

Consistent Heuristics vs. Admissible Heuristics

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(A) ≤ cost(A to B) + h(B)

 d(A,G) <= c(A,B) + d(B,G)

▪ Consistent = Monotone

▪ All consistent heuristics are admissible.

▪ Reverse is not true.

▪ That means, there can be heuristics that ARE admissible, but ARE NOT
consistent.

AI-4511/6511 GWU 32

When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

AI-4511/6511 GWU 33

OPTIMALITY OF A* TREE SEARCH

Key Idea

AI-4511/6511 GWU 35

Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h(x) is an admissible heuristic

Claim:

▪ A will exit the fringe before B

…

AI-4511/6511 GWU 36

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

AI-4511/6511 GWU 37

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

AI-4511/6511 GWU 38

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

▪ All ancestors of A expand before B

▪ A expands before B

▪ A* search is optimal

…

AI-4511/6511 GWU 39

PROPERTIES OF A* TREE SEARCH

AI-4511/6511 GWU 40

Properties of A*

…
b

…
b

Uniform-Cost A*

AI-4511/6511 GWU 41

UCS vs. A* Contours

▪ Uniform-cost expands equally in all
“directions”

▪ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

AI-4511/6511 GWU 42

Comparison

Greedy Uniform Cost A*

AI-4511/6511 GWU 43

A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …

AI-4511/6511 GWU 44

Creating Heuristics

▪ The main point of improvement!!

AI-4511/6511 GWU 45

Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

▪ Inadmissible heuristics are often useful too

15
366

AI-4511/6511 GWU 46

Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ How many successors from the start state?

▪ What should the costs be?

Start State Goal StateActions

AI-4511/6511 GWU 47

8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) =

▪ This is a relaxed-problem heuristic

8

Average nodes expanded when
the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A* TILES 13 39 227

Start State Goal State

AI-4511/6511 GWU 48

8 Puzzle II

▪ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded when the
optimal path has…

…4 steps …8 steps …12 steps

A* TILES 13 39 227

A* MANHATTAN 12 25 73

Start State Goal State

AI-4511/6511 GWU 49

8 Puzzle III

▪ How about using the actual cost as a heuristic?

▪ Would it be admissible?

▪ Would we save on nodes expanded?

▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node

▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

AI-4511/6511 GWU 50

Semi-Lattice of Heuristics

AI-4511/6511 GWU 51

Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics

▪ Bottom of lattice is the zero heuristic (what
does this give us?)

▪ Top of lattice is the exact heuristic

AI-4511/6511 GWU 52

8 Puzzle, Beyond Manhattan Distance

▪ Even if using A* (or other algorithms such as IDA*) along with a
heuristic such as Manhattan Distance, larger puzzles, such as 24
puzzles are still untenable.

▪ This is because Manhattan Distance does not take into account
linear conflicts. For example:

AI-4511/6511 GWU 53

• Manhattan Distance is 4, but tiles 1 and 3
interfere with each other.

• [Hansson, Mayer, and Yung, 1991] show that
given two tiles in their goal row, but reversed in
position, additional vertical moves can be added
to Manhattan distance.

• So, 4 + 2 = 6 in this case.

8 Puzzle, Beyond Manhattan Distance

▪ So, using A* and using the New Heuristic (Manhattan + Vertical
Moves), larger puzzles, such as 24 puzzles are still untenable.

▪ We need to use a pattern database.

▪ A pattern database is a complete set of such positions, with
associated number of moves

▪ A 7-tile pattern database for the Fifteen Puzzle contains 519
million entries.

AI-4511/6511 GWU 54

Using Pattern Database and Semi-Lattice

▪ From a given 15-puzzle we may recognize two different patterns
using two different sets of tiles.

▪ If one pattern suggests a distance of 20 and the other pattern
suggests a distance of 30, we can take the maximum (30).

AI-4511/6511 GWU 55

GRAPH SEARCH

That magical time, when you realize, I have been here!

AI-4511/6511 GWU 56

▪ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

AI-4511/6511 GWU 57

Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

AI-4511/6511 GWU 58

Graph Search

▪ Idea: never expand a state twice

▪ How to implement:

▪ Tree search + set of expanded states (“closed set”)

▪ Expand the search tree node-by-node, but…

▪ Before expanding a node, check to make sure its state has never been
expanded before

▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness? Why/why not?

▪ How about optimality?

AI-4511/6511 GWU 59

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

AI-4511/6511 GWU 60

Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal

3

A

C

G

h=4 h=1

1

h=2

AI-4511/6511 GWU 61

Optimality of A* Graph Search

▪ Why do we need consistency in this case?

▪ Why is admissibility not sufficient?

AI-4511/6511 GWU 62

Optimality of A* Graph Search

▪ Sketch: consider what A* does with a
consistent heuristic:

▪ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f 3

f 2

f 1

AI-4511/6511 GWU 63

Optimality of A* Graph Search

Proof:

▪ New possible problem: some n on path to G*
isn’t in queue when we need it, because some
worse n’ for the same state dequeued and
expanded first (disaster!)

▪ Take the highest such n in tree

▪ Let p be the ancestor of n that was on the
queue when n’ was popped

▪ f(p) < f(n) because of consistency

▪ f(n) < f(n’) because n’ is suboptimal

▪ p would have been expanded before n’

▪ Contradiction!

AI-4511/6511 GWU 64

Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

AI-4511/6511 GWU 65

A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems

AI-4511/6511 GWU 66

Tree Search Pseudo-Code

AI-4511/6511 GWU 67

Graph Search Pseudo-Code

AI-4511/6511 GWU 68

10 AI Commandments

1. “No model is perfect, but some models are useful”
General AI and ML

2. “The algorithms that forget their history are doomed to repeat it.”
Graph Search vs. Tree Search

3. “Ask not what the state can do for you, ask what you can do in that
state.”
Successor function concept in search problems

4. “Your direction is more important than your speed”
Informed search vs. uninformed search

AI-4511/6511 GWU 69

WE JUST WRAPPED UP INFORMED SEARCH!

IT SEEMS, WE HAVE FOUND THE DIRECTION IN

LIFE.

That’s It!

AI-4511/6511 GWU 70

	Slide 1: CS 6511: Artificial Intelligence
	Slide 2: Course Outline
	Slide 3: Key Learning Objectives
	Slide 4: Recap: Search
	Slide 5
	Slide 6: Example: Pancake Problem
	Slide 7: Example Run
	Slide 8: Example Run
	Slide 9: Example Run
	Slide 10: Example Run
	Slide 11: Example: Pancake Problem
	Slide 12
	Slide 13: Longest “Shortest” Path
	Slide 14: Example: Pancake Problem
	Slide 15: General Tree Search
	Slide 16: Uninformed Search
	Slide 17: Uniform Cost Search
	Slide 18: Informed Search
	Slide 19: Direction (which node to expand)
	Slide 20: How do we use Direction/Information
	Slide 21: Search Heuristics
	Slide 22: Heuristic Function: Example 1
	Slide 23: Heuristic Function: Example 2
	Slide 24: Greedy (Informed) Search
	Slide 25
	Slide 26: Comparing UCS and Greedy
	Slide 27: Pros and Cons (and What to Do)
	Slide 28: A* - New algorithm
	Slide 29: A*: Combining UCS and Greedy
	Slide 30: Admissibility (OF HEURISTICS)
	Slide 31: Admissible Heuristics
	Slide 32: Consistent Heuristics vs. Admissible Heuristics
	Slide 33: When should A* terminate?
	Slide 35: Optimality of A* Tree Search
	Slide 36: Optimality of A* Tree Search
	Slide 37: Optimality of A* Tree Search: Blocking
	Slide 38: Optimality of A* Tree Search: Blocking
	Slide 39: Optimality of A* Tree Search: Blocking
	Slide 40: PROPERTIES of A* Tree Search
	Slide 41: Properties of A*
	Slide 42: UCS vs. A* Contours
	Slide 43: Comparison
	Slide 44: A* Applications
	Slide 45: Creating Heuristics
	Slide 46: Creating Admissible Heuristics
	Slide 47: Example: 8 Puzzle
	Slide 48: 8 Puzzle I
	Slide 49: 8 Puzzle II
	Slide 50: 8 Puzzle III
	Slide 51: Semi-Lattice of Heuristics
	Slide 52: Trivial Heuristics, Dominance
	Slide 53: 8 Puzzle, Beyond Manhattan Distance
	Slide 54: 8 Puzzle, Beyond Manhattan Distance
	Slide 55: Using Pattern Database and Semi-Lattice
	Slide 56: Graph Search
	Slide 57: Tree Search: Extra Work!
	Slide 58: Graph Search
	Slide 59: Graph Search
	Slide 60: A* Graph Search Gone Wrong?
	Slide 61: Consistency of Heuristics
	Slide 62: Optimality of A* Graph Search
	Slide 63: Optimality of A* Graph Search
	Slide 64: Optimality of A* Graph Search
	Slide 65: Optimality
	Slide 66: A*: Summary
	Slide 67: Tree Search Pseudo-Code
	Slide 68: Graph Search Pseudo-Code
	Slide 69: 10 AI Commandments
	Slide 70: WE Just wrapped up informed search! IT SEEMS, WE HAVE FOUND THE DIRECTION in LIFE.

