
CS 6511: Artificial Intelligence

Constraint Satisfaction Problems

Amrinder Arora
The George Washington University

Attributions:
[A previous version of these slides was created by Dan Klein and Pieter Abbeel for Intro to AI at UC Berkeley. http://ai.berkeley.edu]

https://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html

http://ai.berkeley.edu/

AI / 6511 /
4511

Introduction

What is AI

Env. and Agent
Types

Making
Decisions

Uninformed
Search

Informed
Search

Constraint
Satisfaction

Adversarial
Search

Reasoning
under

Uncertainty

Bayes’ Nets

Decision
Theory

Markov
Decision

Processes

Course Outline

AI-4511/6511
GWU 2

CSPs: Learning Objectives

▪ Basics and Definitions

▪ Modeling as a graph

▪ Formulation as a Search

▪ Backtracking with Heuristics / MRV / LCV

▪ Constraint Propagation

▪ Forward Checking / Arc Consistency / K-Consistency

▪ Graph Decomposition

▪ Cutsets / Vertex Ordering

AI-4511/6511
GWU 3

Constraint Satisfaction Problems

▪ Constraint satisfaction problems (CSPs):
▪ A special subset of search problems

▪ State is defined by variables Xi with values from a
domain D (sometimes D depends on i)

▪ Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

▪ Simple example of a formal representation language

▪ Allows useful general-purpose algorithms with more
power than standard search algorithms

AI-4511/6511
GWU 4

CSPs can be considered a special case of Search

▪ Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

▪ Planning: sequences of actions
▪ The path to the goal is the important thing

▪ Paths have various costs, depths

▪ Heuristics give problem-specific guidance

▪ Identification: assignments to variables
▪ The goal itself is important, not the path

▪ All paths at the same depth (for some formulations)

▪ CSPs are specialized for identification problems

AI-4511/6511
GWU 5

CSP Examples

▪ Coloring

▪ Scheduling – Assignment / Timetabling / Transportation / Factory

▪ Hardware configuration / Circuit layout

▪ Fault diagnosis

▪ Variables can be:
▪ Finite (Colors 1,2,3..k)

▪ Infinite, but countable (natural numbers)

▪ Infinite, uncountable (real numbers)

AI-4511/6511
GWU 6

Example: Map Coloring

▪ Variables: A, B, C, D, E, F, G, H

▪ Domains: D = {r, g, b}

▪ Constraints: adjacent regions must have different
colors

▪ Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

AI-4511/6511
GWU 7

A

B

D

F
E

C

H

G

Example: N-Queens

▪ Formulation 1:

▪ Variables:

▪ Domains:

▪ Constraints

AI-4511/6511
GWU 8

Example: N-Queens

▪ Formulation 2:

▪ Variables:

▪ Domains:

▪ Constraints:

Implicit:

Explicit:

AI-4511/6511
GWU 9

▪ 2^n^2 vs. n^n

▪ N = 10

▪ 2^100 >>10^10

▪ N = 100

▪ 2^10000 ? 100^100. 1 with 200 zeros

▪ (2^10)^1000

▪ 10^3^1000

▪ 3000 zeroes. Vs. 200 zeros.

AI-4511/6511
GWU 10

C
SP

s:
 M

ai
n

 Id
e

as

• Representing CSPs

• Constraint Graphs

• Backtracking Search for CSPs

• Heuristics for improving this, by

• Ordering variables

• Ordering values

• Backjumping

• Constraint Propagation

• Forward Checking

• Arc Consistency (AC3 algorithm)

• Using structure of constraint graph

• Local Search
AI-4511/6511 GWU 11

Representing CSPs: Modeling Constraints

▪ Constraints can be articulated using a specific language

▪ Or, using constraint graphs

▪ Constraint graphs can be drawn two different ways:

▪ Using variables only, lines drawn between them (Can only model binary
constraints, but the graph is easy to see)

▪ Using variables as circle nodes and special rectangle nodes that serve as
constraints (Can model binary, ternary and in general n-ary constraints)

AI-4511/6511
GWU 12

Constraint Graphs

AI-4511/6511
GWU 13

Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two
variables

▪ Binary constraint graph: nodes are variables, arcs
show constraints

▪ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

AI-4511/6511
GWU 14

Example: Cryptarithmetic

▪ Variables:

▪ Domains:

▪ Constraints:

AI-4511/6511
GWU 15

Example: Sudoku

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

AI-4511/6511
GWU 16

Varieties of CSPs

▪ Discrete Variables
▪ Finite domains

▪ Size d means O(dn) complete assignments

▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

▪ Infinite domains (integers, strings, etc.)

▪ E.g., job scheduling, variables are start/end times for each job

▪ Linear constraints solvable, nonlinear undecidable

▪ Continuous variables
▪ E.g., start/end times for Hubble Telescope observations

▪ Linear constraints solvable in polynomial time by LP methods

AI-4511/6511
GWU 17

Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)

AI-4511/6511

GWU 18

Standard Search Formulation

▪ Standard search formulation of CSPs

▪ States defined by the values assigned
so far (partial assignments)
▪ Initial state: the empty assignment, {}
▪ Successor function: assign a value to an

unassigned variable
▪ Goal test: the current assignment is

complete and satisfies all constraints

▪ We’ll start with the straightforward,
naïve approach, then improve it

AI-4511/6511
GWU 19

C
SP

s:
 M

ai
n

 Id
e

as

• Representing CSPs

• Constraint Graphs

• Backtracking Search for CSPs

• Heuristics for improving this, by

• Ordering variables

• Ordering values

• Backjumping

• Constraint Propagation

• Forward Checking

• Arc Consistency (AC3 algorithm)

• Using structure of constraint graph

• Local Search
AI-4511/6511 GWU 20

Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ That is, consider only values which do not conflict previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
 is called backtracking search (not the best name)

▪ Can solve n-queens for n  25

AI-4511/6511
GWU 21

Backtracking Example

AI-4511/6511
GWU 22

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:

▪ Which variable should be assigned next?

▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?

AI-4511/6511
GWU 23

WHICH VARIABLE TO PICK
WHICH VALUE TO TRY

Ordering

AI-4511/6511 GWU 24

Ordering: Which Variable to Pick

▪ Variable Ordering: Minimum remaining values (MRV):

▪ Choose the variable with the fewest legal left values in its domain

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering

AI-4511/6511
GWU 25

Tie Breaking Rule

▪ If two variables both have minimum remaining values, then from
within these two, we can consider a variable that is involved in
more constraints.

▪ Even after this rule, multiple variables may still be tied.

AI-4511/6511
GWU 26

Ordering: Which Value to Choose?

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least

constraining value

▪ I.e., the one that rules out the fewest values in
the remaining variables

▪ Note that it may take some computation to
determine this! (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
 1000 queens feasible
AI-4511/6511

GWU 27

C
SP

s:
 M

ai
n

 Id
e

as

• Representing CSPs

• Constraint Graphs

• Backtracking Search for CSPs

• Heuristics for improving this, by

• Ordering variables

• Ordering values

• Backjumping

• Constraint Propagation

• Forward Checking

• Arc Consistency (AC3 algorithm)

• Using structure of constraint graph

• Local Search
AI-4511/6511 GWU 28

Comparison of Propagation Techniques

AI-4511/6511
GWU 29

Already
instantiated Currently

instantiated

Neighbors Distant Relatives

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

AI-4511/6511
GWU 30

▪ {r, g, b}

▪ MRV → “C” -> “r”

▪ Forward Checking

▪ “A” → [“g”, “r”, “b”]

▪ “B” → [“g”, “r”, “b”]

▪ “D” → [“g”, “r”, “b”]

▪ “F” → [“g”, “r”, “b”]

▪ “G” → [“g”, “r”, “b”]

AI-4511/6511
GWU 31

A

B

D

F
E

C

H

G

Practical Tip

▪ If you implement forward checking, then, there is no need to
check that the “new assignment” is valid.

▪ (That would be doing redundant work.)

AI-4511/6511
GWU 32

Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

▪ NT and SA cannot both be blue!
▪ Why didn’t we detect this yet?
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

AI-4511/6511
GWU 33

Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

AI-4511/6511
GWU 34

Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment
▪ What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

AI-4511/6511
GWU 35

Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2)
▪ … but detecting all possible future problems is NP-hard – why?

AI-4511/6511
GWU 36

Limitations of Arc Consistency

▪ After enforcing arc
consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and
not know it)

▪ Arc consistency still runs
inside a backtracking search!

What went
wrong here?

AI-4511/6511
GWU 37

BEYOND ARC CONSISTENCY

AC-3, Limitations and K-Consistency

AI-4511/6511 GWU 38

Limitations of Arc Consistency

▪ After enforcing arc
consistency:

▪ Can have no solutions left (and
not know it)

How do we capture this component?

AI-4511/6511
GWU 39

K-Consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the kth node.

▪ Higher k more expensive to compute

AI-4511/6511
GWU 40

Strong K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency! (e.g., k=3, called
path consistency)

AI-4511/6511
GWU 41

Structure

AI-4511/6511
GWU 42

Problem Structure

▪ Extreme case: independent subproblems
▪ Example: Tasmania and mainland do not interact

▪ Independent subproblems are identifiable as
connected components of constraint graph

▪ Suppose a graph of n variables can be broken into
subproblems of only c variables:
▪ Worst-case solution cost is O((n/c)(dc)), linear in n
▪ E.g., n = 80, d = 2, c =20
▪ 280 = 4 billion years at 10 million nodes/sec
▪ (4)(220) = 0.4 seconds at 10 million nodes/sec

AI-4511/6511
GWU 43

Tree-Structured CSPs

▪ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
▪ Compare to general CSPs, where worst-case time is O(dn)

▪ This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

AI-4511/6511
GWU 44

Tree-Structured CSPs

▪ Algorithm for tree-structured CSPs:
▪ Order: Choose a root variable, order variables so that parents precede children

▪ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
▪ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

▪ Runtime: O(n d2) (why?)

AI-4511/6511
GWU 45

Tree-Structured CSPs

▪ Claim 1: After backward pass, all root-to-leaf arcs are consistent
▪ Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

▪ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
▪ Proof: Induction on position

▪ Why doesn’t this algorithm work with cycles in the constraint graph?

▪ We’ll see this basic idea again with Bayes’ nets
AI-4511/6511

GWU 46

IMPROVING STRUCTURE

Making the next leap

AI-4511/6511 GWU 47

Nearly Tree-Structured CSPs

▪ Conditioning: instantiate a variable, prune its neighbors' domains

▪ Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

▪ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c
AI-4511/6511

GWU 48

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

AI-4511/6511
GWU 49

How much time?

▪ 13 variables, 4 colors

AI-4511/6511
GWU 50

• Bruteforce

backtracking: 4^13

• Step 1: Find the

cutset. A and B
• Step 2: Assign colors

to A and B. 12

• Solve the tree

CSP. n d^2.

11.4^2

Total time: 12 x 11 x

4^2

Cutset Quiz

▪ Find the smallest cutset for the graph below.

AI-4511/6511
GWU 51

Tree Decomposition*

▪ Idea: create a tree-structured graph of mega-variables

▪ Each mega-variable encodes part of the original CSP

▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),

 (WA=b,SA=r,NT=g),

 …}

{(NT=r,SA=g,Q=b),

 (NT=b,SA=g,Q=r),

 …}

Agree: (M1,M2) 

 {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
g

re
e

 o
n

 s
h

a
re

d
 v

a
rs

NT

SA


WA

 

Q

SA


NT

 

A
g

re
e

 o
n

 s
h

a
re

d
 v

a
rs

NS

W

SA


Q

 

A
g

re
e

 o
n

 s
h

a
re

d
 v

a
rs

V

SA


NS

W

 

AI-4511/6511
GWU 52

C
SP

s:
 M

ai
n

 Id
e

as

• Representing CSPs

• Constraint Graphs

• Backtracking Search for CSPs

• Heuristics for improving this, by

• Ordering variables

• Ordering values

• Backjumping

• Constraint Propagation

• Forward Checking

• Arc Consistency (AC3 algorithm)

• Using structure of constraint graph

• Local Search
AI-4511/6511 GWU 53

AI / 6511 /
4511

Introduction

What is AI

Env. and Agent
Types

Making
Decisions

Uninformed
Search

Informed
Search

Constraint
Satisfaction

Adversarial
Search

Reasoning
under

Uncertainty

Bayes’ Nets

Decision
Theory

Markov
Decision

Processes

Course Outline

AI-4511/6511
GWU 54

	Slide 1: CS 6511: Artificial Intelligence
	Slide 2: Course Outline
	Slide 3: CSPs: Learning Objectives
	Slide 4: Constraint Satisfaction Problems
	Slide 5: CSPs can be considered a special case of Search
	Slide 6: CSP Examples
	Slide 7: Example: Map Coloring
	Slide 8: Example: N-Queens
	Slide 9: Example: N-Queens
	Slide 10
	Slide 11: CSPs: Main Ideas
	Slide 12: Representing CSPs: Modeling Constraints
	Slide 13: Constraint Graphs
	Slide 14: Constraint Graphs
	Slide 15: Example: Cryptarithmetic
	Slide 16: Example: Sudoku
	Slide 17: Varieties of CSPs
	Slide 18: Varieties of Constraints
	Slide 19: Standard Search Formulation
	Slide 20: CSPs: Main Ideas
	Slide 21: Backtracking Search
	Slide 22: Backtracking Example
	Slide 23: Improving Backtracking
	Slide 24: Which Variable to pick Which Value to Try
	Slide 25: Ordering: Which Variable to Pick
	Slide 26: Tie Breaking Rule
	Slide 27: Ordering: Which Value to Choose?
	Slide 28: CSPs: Main Ideas
	Slide 29: Comparison of Propagation Techniques
	Slide 30: Filtering: Forward Checking
	Slide 31
	Slide 32: Practical Tip
	Slide 33: Filtering: Constraint Propagation
	Slide 34: Consistency of A Single Arc
	Slide 35: Arc Consistency of an Entire CSP
	Slide 36: Enforcing Arc Consistency in a CSP
	Slide 37: Limitations of Arc Consistency
	Slide 38: Beyond Arc Consistency
	Slide 39: Limitations of Arc Consistency
	Slide 40: K-Consistency
	Slide 41: Strong K-Consistency
	Slide 42: Structure
	Slide 43: Problem Structure
	Slide 44: Tree-Structured CSPs
	Slide 45: Tree-Structured CSPs
	Slide 46: Tree-Structured CSPs
	Slide 47: Improving Structure
	Slide 48: Nearly Tree-Structured CSPs
	Slide 49: Cutset Conditioning
	Slide 50: How much time?
	Slide 51: Cutset Quiz
	Slide 52: Tree Decomposition*
	Slide 53: CSPs: Main Ideas
	Slide 54: Course Outline

