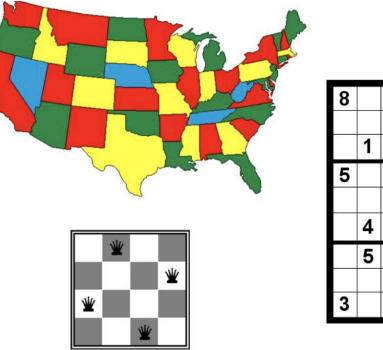
CS 6511: Artificial Intelligence

Constraint Satisfaction Problems



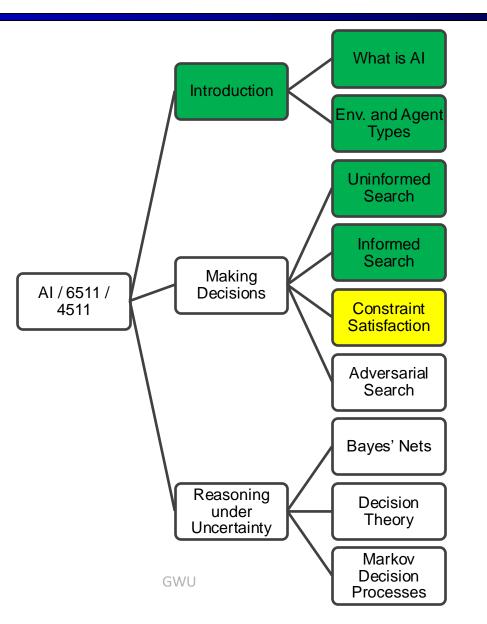
6 5 5 2

Amrinder Arora The George Washington University

Attributions:

[A previous version of these slides was created by Dan Klein and Pieter Abbeel for Intro to AI at UC Berkeley. <u>http://ai.berkeley.edu</u>] https://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html

Course Outline



CSPs: Learning Objectives

- Basics and Definitions
 - Modeling as a graph
- Formulation as a Search
 - Backtracking with Heuristics / MRV / LCV
- Constraint Propagation
 - Forward Checking / Arc Consistency / K-Consistency
- Graph Decomposition
 - Cutsets / Vertex Ordering

Constraint Satisfaction Problems

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a *formal representation language*
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSPs can be considered a special case of Search

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

CSP Examples

- Coloring
- Scheduling Assignment / Timetabling / Transportation / Factory
- Hardware configuration / Circuit layout
- Fault diagnosis
- Variables can be:
 - Finite (Colors 1,2,3..k)
 - Infinite, but countable (natural numbers)
 - Infinite, uncountable (real numbers)

Example: Map Coloring

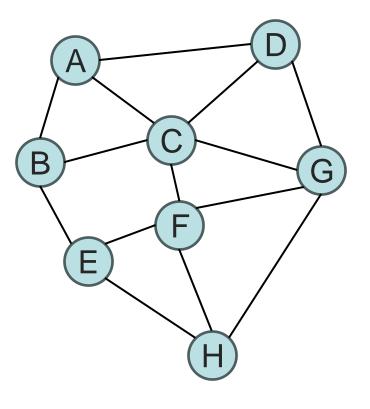
- Variables: A, B, C, D, E, F, G, H
- Domains: D = {r, g, b}
- Constraints: adjacent regions must have different colors

Implicit:

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

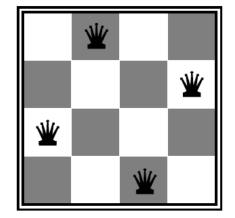
Solutions are assignments satisfying all constraints, e.g.:

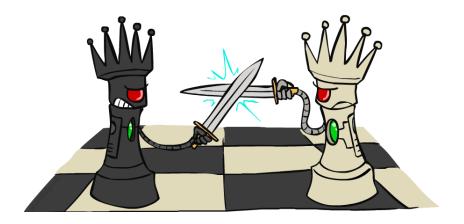
{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}



Example: N-Queens

- Formulation 1:
 - Variables: *X_{ij}*
 - Domains: {0, 1}
 - Constraints





 $\begin{aligned} \forall i, j, k \ (X_{ij}, X_{ik}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{kj}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) &\in \{(0, 0), (0, 1), (1, 0)\} \end{aligned}$

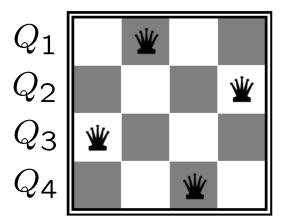
$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \dots N\}$
 - Constraints:

Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$



- 2^n^2 vs. n^n
- N = 10
 - **2**¹⁰⁰ >>10¹⁰
- N = 100
 - 2^10000 ? 100^100. 1 with 200 zeros
 - **(2^10)^1000**
 - **10^3^1000**
 - 3000 zeroes. Vs. 200 zeros.

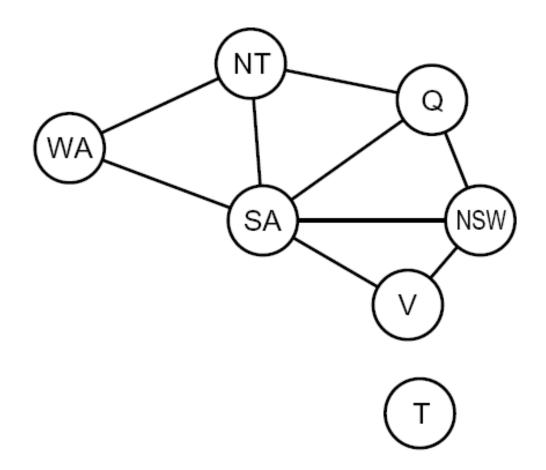
- Representing CSPs
 - Constraint Graphs
- Backtracking Search for CSPs
 - Heuristics for improving this, by
 - Ordering variables
 - Ordering values
 - Backjumping
- Constraint Propagation
 - Forward Checking
 - Arc Consistency (AC3 algorithm)
 - Using structure of constraint graph
- Local Search

Representing CSPs: Modeling Constraints

- Constraints can be articulated using a specific language
- Or, using constraint graphs

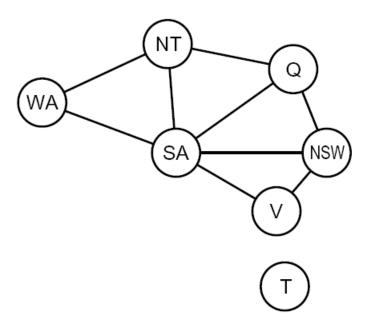
- Constraint graphs can be drawn two different ways:
 - Using variables only, lines drawn between them (Can only model binary constraints, but the graph is easy to see)
 - Using variables as circle nodes and special rectangle nodes that serve as constraints (Can model binary, ternary and in general n-ary constraints)

Constraint Graphs



Constraint Graphs

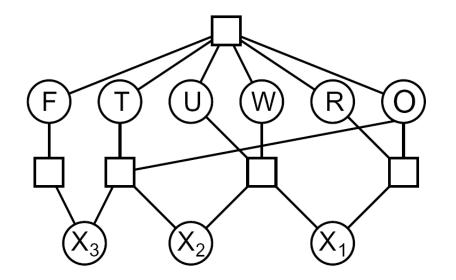
- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!



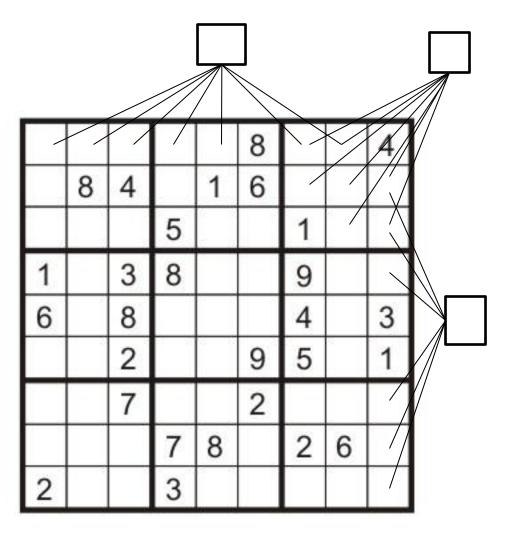
Example: Cryptarithmetic

- Variables:
 - $F T U W R O X_1 X_2 X_3$
- Domains:
 - $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints:
 - $\operatorname{alldiff}(F, T, U, W, R, O)$
 - $O + O = R + 10 \cdot X_1$

T W O + T W O F O U R



Example: Sudoku



- Variables:
 - Each (open) square
- Domains:
 - {1,2,...,9}
- Constraints:

9-way alldiff for each column9-way alldiff for each row9-way alldiff for each region(or can have a bunch of

pairwise inequality constraints)

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size *d* means O(*dⁿ*) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

 $SA \neq green$

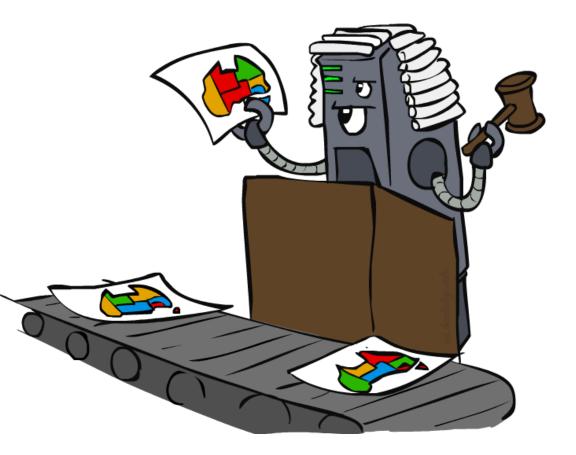
Binary constraints involve pairs of variables, e.g.:

 $SA \neq WA$

- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Standard Search Formulation

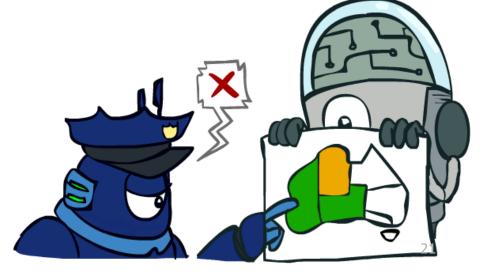
- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it



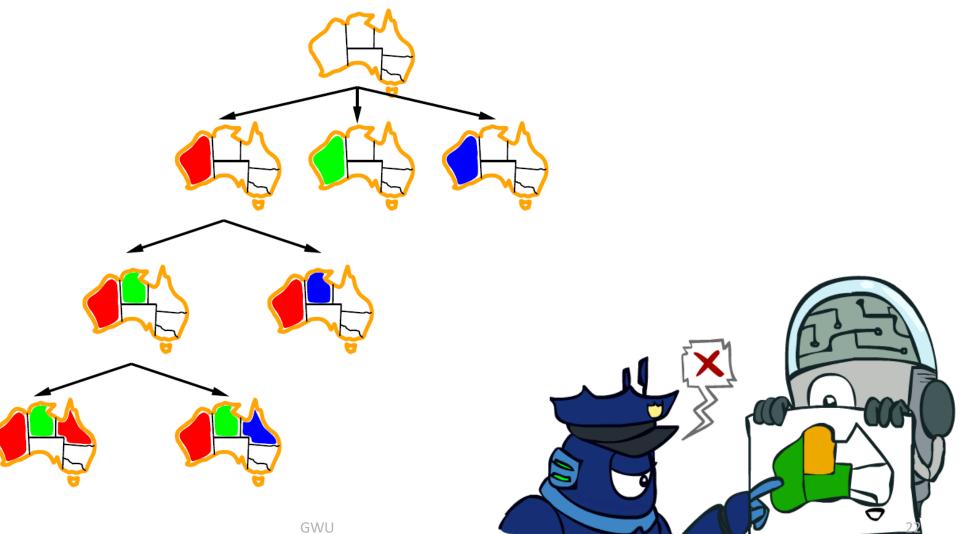
- Representing CSPs
 - Constraint Graphs
- Backtracking Search for CSPs
 - Heuristics for improving this, by
 - Ordering variables
 - Ordering values
 - Backjumping
- Constraint Propagation
 - Forward Checking
 - Arc Consistency (AC3 algorithm)
 - Using structure of constraint graph
- Local Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - That is, consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraint
 - "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for $n \approx 25$



Backtracking Example



AI-4511/6511

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?

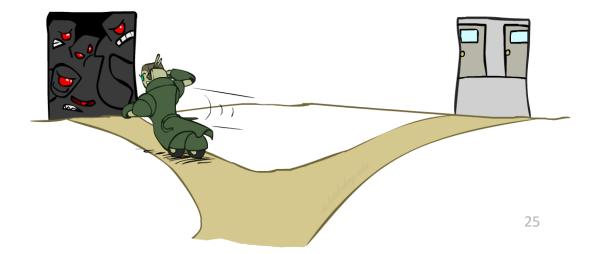
Ordering

WHICH VARIABLE TO PICK WHICH VALUE TO TRY

Ordering: Which Variable to Pick

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering



Tie Breaking Rule

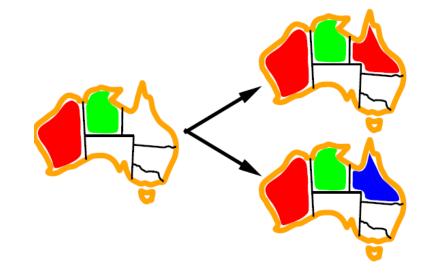
 If two variables both have minimum remaining values, then from within these two, we can consider a variable that is involved in more constraints.

• Even after this rule, multiple variables may still be tied.

Ordering: Which Value to Choose?

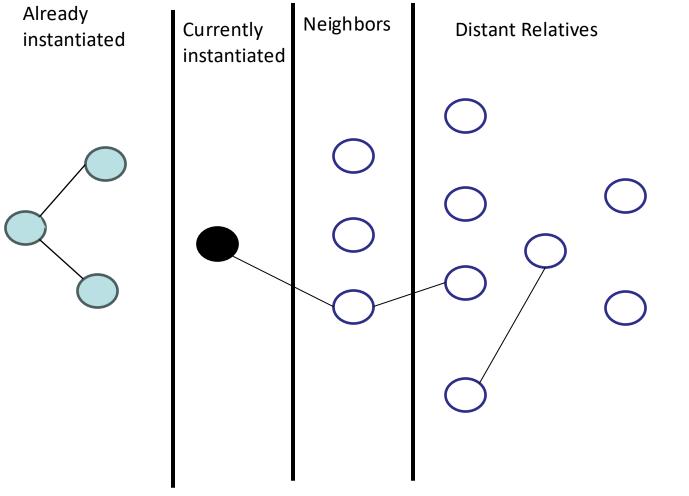
GWU

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible



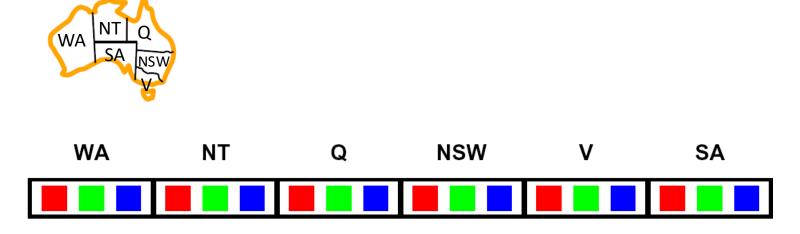
- Representing CSPs
 - Constraint Graphs
- Backtracking Search for CSPs
 - Heuristics for improving this, by
 - Ordering variables
 - Ordering values
 - Backjumping
- Constraint Propagation
 - Forward Checking
 - Arc Consistency (AC3 algorithm)
 - Using structure of constraint graph
- Local Search

Comparison of Propagation Techniques

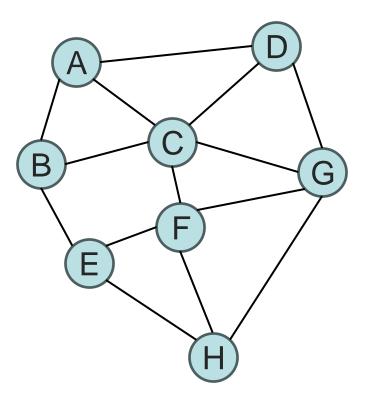


Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment



- {r, g, b}
- MRV → "C" -> "r"
- Forward Checking
 - "A" → ["g", "r", "b"]
 - "B" → ["g", <u>"r"</u>, "b"]
 - "D" → ["g", "r", "b"]
 - "F" → ["g", "r", "b"]
 - "G" → ["g", "r", "b"]

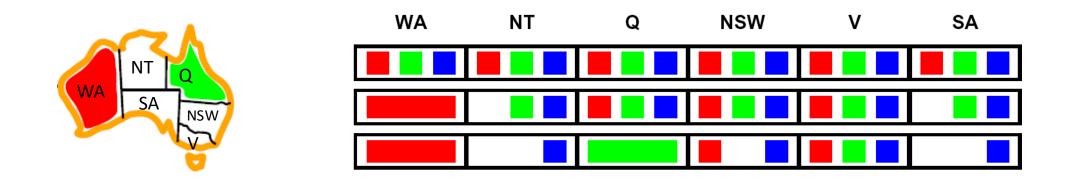


Practical Tip

- If you implement forward checking, then, there is no need to check that the "new assignment" is valid.
- (That would be doing redundant work.)

Filtering: Constraint Propagation

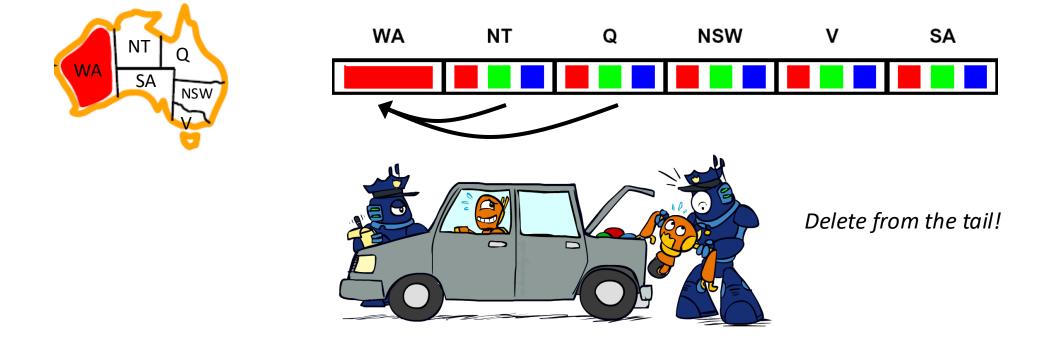
 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:



- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- *Constraint propagation:* reason from constraint to constraint

Consistency of A Single Arc

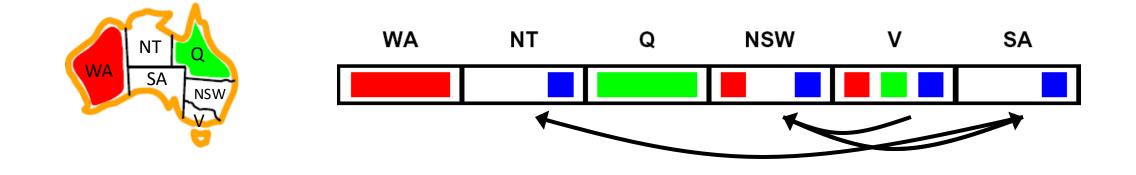
An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint



• Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:



- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

Enforcing Arc Consistency in a CSP

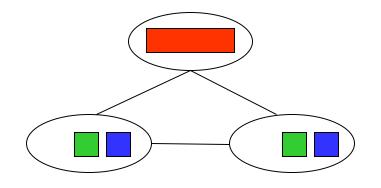
```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
      if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
         for each X_k in NEIGHBORS [X_i] do
            add (X_k, X_i) to queue
function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from DOMAIN[X<sub>i</sub>]; removed \leftarrow true
```

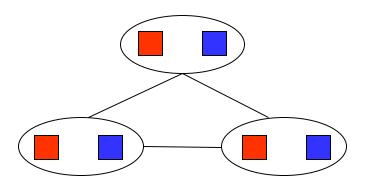
return removed

- Runtime: O(n²d³), can be reduced to O(n²d²)
- In but detecting all possible future problems is NP-hard why?

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!





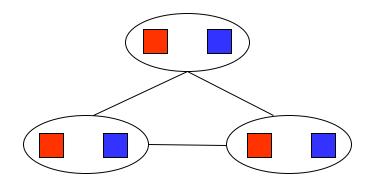
What went wrong here?

AC-3, Limitations and K-Consistency

BEYOND ARC CONSISTENCY

Limitations of Arc Consistency

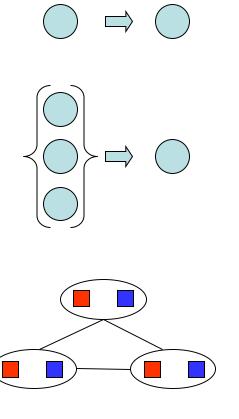
- After enforcing arc consistency:
 - Can have no solutions left (and not know it)



How do we capture this component?

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute



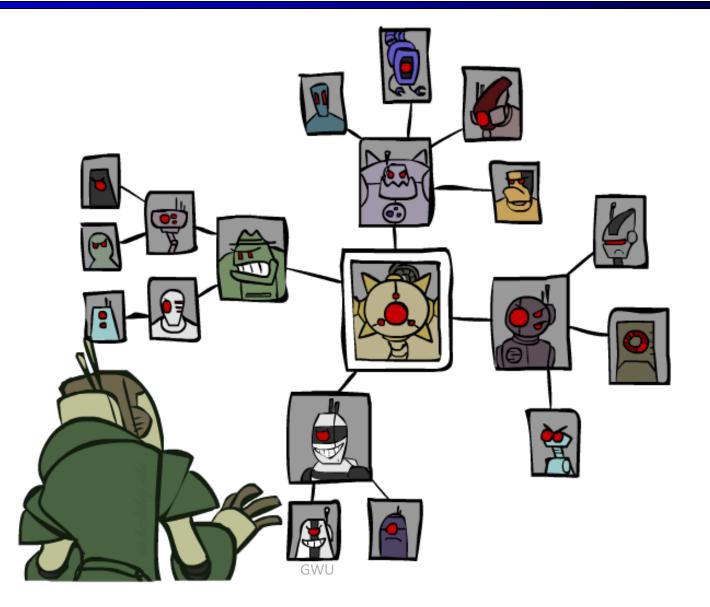
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!

Why?

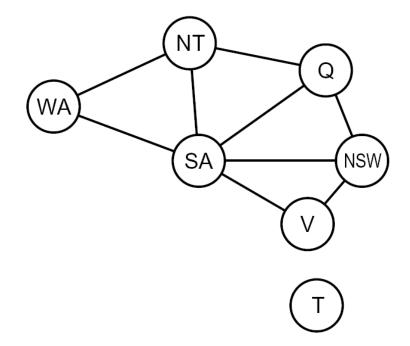
- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2
- ...
- Lots of middle ground between arc consistency and n-consistency! (e.g., k=3, called path consistency)

Structure

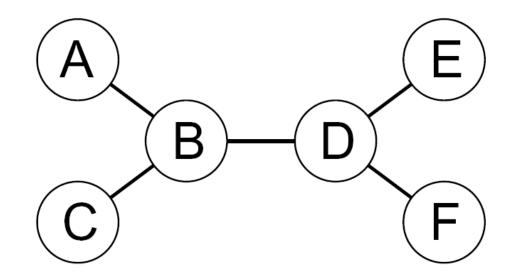


Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2⁸⁰ = 4 billion years at 10 million nodes/sec
 - (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec



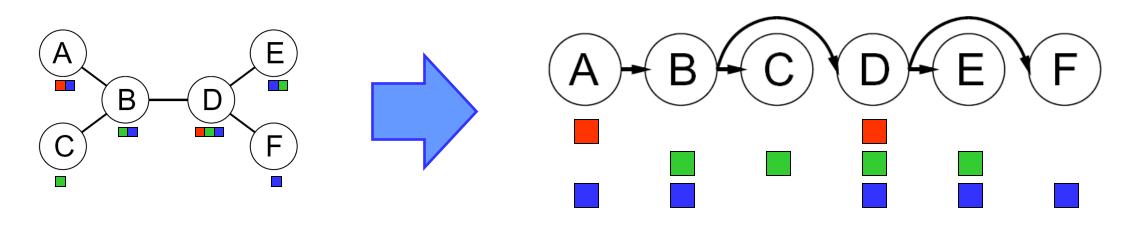
Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

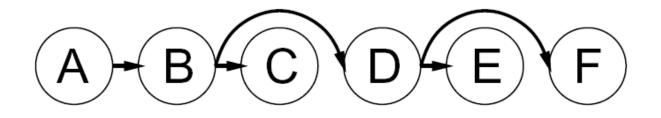


- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)



Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)



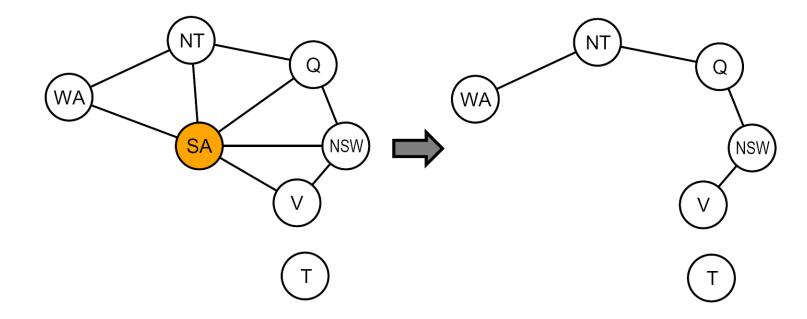
- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?

We'll see this basic idea again with Bayes' nets AI-4511/6511

Making the next leap

IMPROVING STRUCTURE

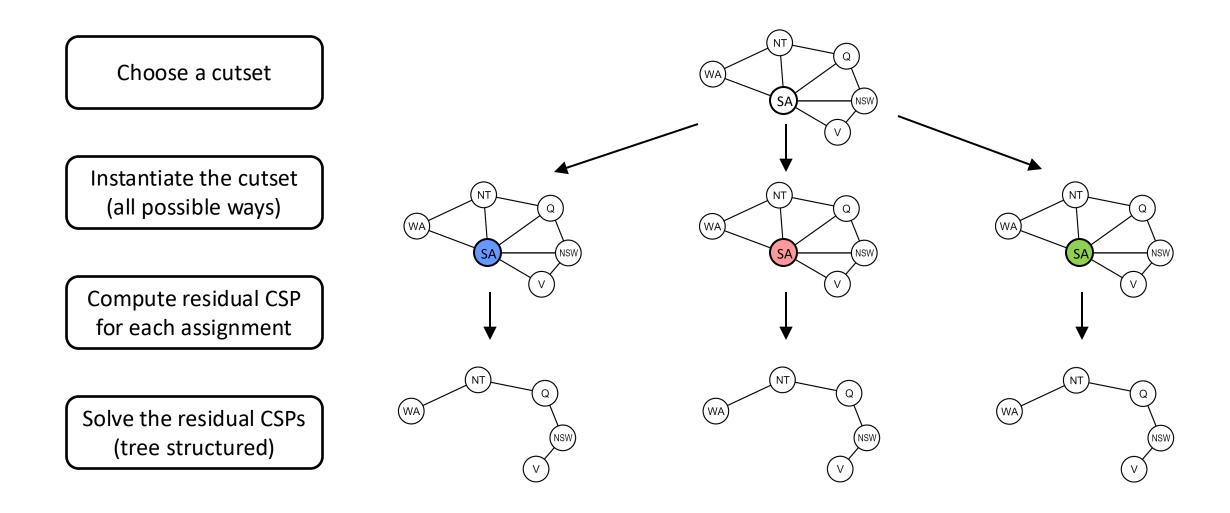
Nearly Tree-Structured CSPs



- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

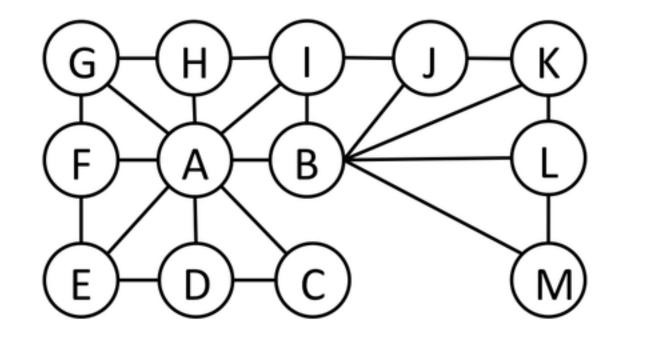
Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c
AI-4511/6511

Cutset Conditioning



How much time?

13 variables, 4 colors

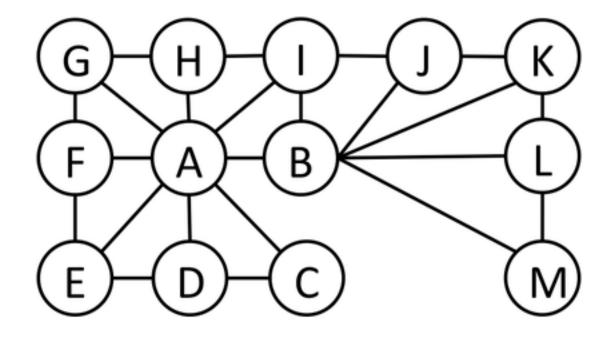


- Bruteforce
 backtracking: 4^13
- Step 1: Find the cutset. A and B
- Step 2: Assign colors to A and B. 12
 - Solve the tree CSP. n d².
 11.4²

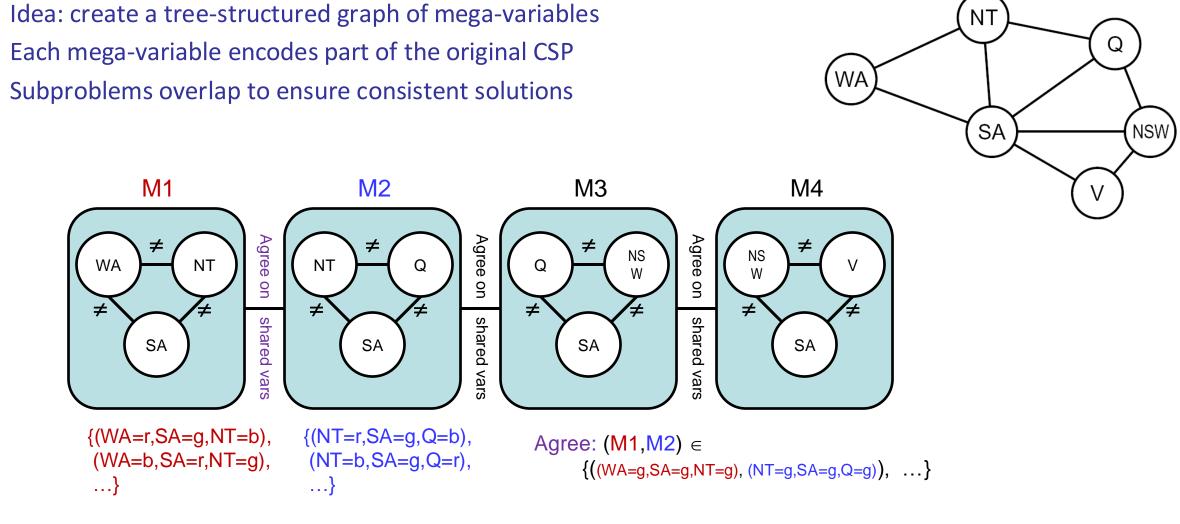
Total time: 12 x 11 x 4^2

Cutset Quiz

Find the smallest cutset for the graph below.



Tree Decomposition*



- Representing CSPs
 - Constraint Graphs
- Backtracking Search for CSPs
 - Heuristics for improving this, by
 - Ordering variables
 - Ordering values
 - Backjumping
- Constraint Propagation
 - Forward Checking
 - Arc Consistency (AC3 algorithm)
 - Using structure of constraint graph
- Local Search

Course Outline

