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CSPs: Learning Objectives

▪ Basics and Definitions

▪ Modeling as a graph

▪ Formulation as a Search

▪ Backtracking with Heuristics / MRV / LCV

▪ Constraint Propagation

▪ Forward Checking / Arc Consistency / K-Consistency

▪ Graph Decomposition

▪ Cutsets / Vertex Ordering
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Constraint Satisfaction Problems

▪ Constraint satisfaction problems (CSPs):
▪ A special subset of search problems

▪ State is defined by variables Xi  with values from a 
domain D (sometimes D depends on i)

▪ Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables

▪ Simple example of a formal representation language

▪ Allows useful general-purpose algorithms with more 
power than standard search algorithms
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CSPs can be considered a special case of Search

▪ Assumptions about the world: a single agent, deterministic actions, fully observed 
state, discrete state space

▪ Planning: sequences of actions
▪ The path to the goal is the important thing

▪ Paths have various costs, depths

▪ Heuristics give problem-specific guidance

▪ Identification: assignments to variables
▪ The goal itself is important, not the path

▪ All paths at the same depth (for some formulations)

▪ CSPs are specialized for identification problems
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CSP Examples

▪ Coloring

▪ Scheduling – Assignment / Timetabling / Transportation / Factory

▪ Hardware configuration / Circuit layout

▪ Fault diagnosis

▪ Variables can be:
▪ Finite (Colors 1,2,3..k)

▪ Infinite, but countable (natural numbers)

▪ Infinite, uncountable (real numbers)

AI-4511/6511
GWU 6



Example: Map Coloring

▪ Variables: A, B, C, D, E, F, G, H

▪ Domains: D = {r, g, b}

▪ Constraints: adjacent regions must have different 
colors

▪ Solutions are assignments satisfying all 
constraints, e.g.:

 

Implicit:

Explicit:
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Example: N-Queens

▪ Formulation 1:

▪ Variables:

▪ Domains:

▪ Constraints
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Example: N-Queens

▪ Formulation 2:

▪ Variables:

▪ Domains:

▪ Constraints:

Implicit:

Explicit:
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▪ 2^n^2 vs. n^n

▪ N = 10

▪ 2^100  >>10^10

▪ N = 100

▪ 2^10000  ? 100^100.  1 with 200 zeros

▪ (2^10)^1000

▪ 10^3^1000 

▪ 3000 zeroes.   Vs.  200 zeros.
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• Representing CSPs

• Constraint Graphs

• Backtracking Search for CSPs

• Heuristics for improving this, by

• Ordering variables

• Ordering values

• Backjumping

• Constraint Propagation

• Forward Checking

• Arc Consistency (AC3 algorithm)

• Using structure of constraint graph

• Local Search
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Representing CSPs: Modeling Constraints

▪ Constraints can be articulated using a specific language

▪ Or, using constraint graphs

▪ Constraint graphs can be drawn two different ways:

▪ Using variables only, lines drawn between them (Can only model binary 
constraints, but the graph is easy to see)

▪ Using variables as circle nodes and special rectangle nodes that serve as 
constraints (Can model binary, ternary and in general n-ary constraints)
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Constraint Graphs
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Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two 
variables

▪ Binary constraint graph: nodes are variables, arcs 
show constraints

▪ General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!
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Example: Cryptarithmetic

▪ Variables:

▪ Domains:

▪ Constraints:

AI-4511/6511
GWU 15



Example: Sudoku

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)
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Varieties of CSPs

▪ Discrete Variables
▪ Finite domains

▪ Size d means O(dn) complete assignments

▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

▪ Infinite domains (integers, strings, etc.)

▪ E.g., job scheduling, variables are start/end times for each job

▪ Linear constraints solvable, nonlinear undecidable

▪ Continuous variables
▪ E.g., start/end times for Hubble Telescope observations

▪ Linear constraints solvable in polynomial time by LP methods
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Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to 

reducing domains), e.g.:

 

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
    e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)
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Standard Search Formulation

▪ Standard search formulation of CSPs

▪ States defined by the values assigned 
so far (partial assignments)
▪ Initial state: the empty assignment, {}
▪ Successor function: assign a value to an 

unassigned variable
▪ Goal test: the current assignment is 

complete and satisfies all constraints

▪ We’ll start with the straightforward, 
naïve approach, then improve it
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• Constraint Graphs

• Backtracking Search for CSPs
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• Ordering variables

• Ordering values
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Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ That is, consider only values which do not conflict previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
 is called backtracking search (not the best name)

▪ Can solve n-queens for n  25
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Backtracking Example
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Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:

▪ Which variable should be assigned next?

▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?
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WHICH VARIABLE TO PICK
WHICH VALUE TO TRY

Ordering
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Ordering: Which Variable to Pick

▪ Variable Ordering: Minimum remaining values (MRV):

▪ Choose the variable with the fewest legal left values in its domain

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering
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Tie Breaking Rule

▪ If two variables both have minimum remaining values, then from 
within these two, we can consider a variable that is involved in 
more constraints.

▪ Even after this rule, multiple variables may still be tied.
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Ordering: Which Value to Choose?

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least 

constraining value

▪ I.e., the one that rules out the fewest values in 
the remaining variables

▪ Note that it may take some computation to 
determine this!  (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
 1000 queens feasible
AI-4511/6511
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Comparison of Propagation Techniques
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▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V
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▪ {r, g, b}

▪ MRV → “C” -> “r”

▪ Forward Checking 

▪ “A” → [“g”,  “r”, “b”]

▪ “B” → [“g”,  “r”, “b”]

▪ “D” → [“g”,  “r”, “b”]

▪ “F” → [“g”,  “r”, “b”]

▪ “G” → [“g”,  “r”, “b”]
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Practical Tip

▪ If you implement forward checking, then, there is no need to 
check that the “new assignment” is valid.

▪ (That would be doing redundant work.)
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Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures:

▪ NT and SA cannot both be blue!
▪ Why didn’t we detect this yet?
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V
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Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V
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Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment 
▪ What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!

WA SA

NT Q

NSW

V

AI-4511/6511
GWU 35



Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2)
▪ … but detecting all possible future problems is NP-hard – why?
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Limitations of Arc Consistency

▪ After enforcing arc 
consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and 
not know it)

▪ Arc consistency still runs 
inside a backtracking search!

What went 
wrong here?
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BEYOND ARC CONSISTENCY

AC-3, Limitations and K-Consistency
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Limitations of Arc Consistency

▪ After enforcing arc 
consistency:

▪ Can have no solutions left (and 
not know it)

How do we capture this component?
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K-Consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a 
value which meets that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any 
consistent assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1 
can be extended to the kth node.

▪ Higher k more expensive to compute
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Strong K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency!  (e.g., k=3, called 
path consistency)
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Structure
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Problem Structure

▪ Extreme case: independent subproblems
▪ Example: Tasmania and mainland do not interact

▪ Independent subproblems are identifiable as 
connected components of constraint graph

▪ Suppose a graph of n variables can be broken into 
subproblems of only c variables:
▪ Worst-case solution cost is O((n/c)(dc)), linear in n
▪ E.g., n = 80, d = 2, c =20
▪ 280 = 4 billion years at 10 million nodes/sec
▪ (4)(220) = 0.4 seconds at 10 million nodes/sec
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Tree-Structured CSPs

▪ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
▪ Compare to general CSPs, where worst-case time is O(dn)

▪ This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning
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Tree-Structured CSPs

▪ Algorithm for tree-structured CSPs:
▪ Order: Choose a root variable, order variables so that parents precede children

▪ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
▪ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

▪ Runtime: O(n d2)  (why?)
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Tree-Structured CSPs

▪ Claim 1: After backward pass, all root-to-leaf arcs are consistent
▪ Proof: Each X→Y was made consistent at one point and Y’s domain could not have 

been reduced thereafter (because Y’s children were processed before Y)

▪ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
▪ Proof: Induction on position

▪ Why doesn’t this algorithm work with cycles in the constraint graph?

▪ We’ll see this basic idea again with Bayes’ nets
AI-4511/6511
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IMPROVING STRUCTURE

Making the next leap
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Nearly Tree-Structured CSPs

▪ Conditioning: instantiate a variable, prune its neighbors' domains

▪ Cutset conditioning: instantiate (in all ways) a set of variables such that 
the remaining constraint graph is a tree

▪ Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c
AI-4511/6511

GWU 48



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset
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How much time?

▪ 13 variables, 4 colors
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• Bruteforce 

backtracking: 4^13

• Step 1: Find the 

cutset. A and B
• Step 2: Assign colors 

to A and B.  12 

• Solve the tree 

CSP. n d^2. 

11.4^2

Total time: 12 x 11 x 

4^2



Cutset Quiz

▪ Find the smallest cutset for the graph below.
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Tree Decomposition*

▪ Idea: create a tree-structured graph of mega-variables

▪ Each mega-variable encodes part of the original CSP

▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),      

          (WA=b,SA=r,NT=g),

          …}

{(NT=r,SA=g,Q=b),

          (NT=b,SA=g,Q=r),

          …}

Agree: (M1,M2)  

        {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}
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