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Outcomes Based on Chance
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Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not (just) by an adversary!
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Expectimax Search

▪ Why wouldn’t we know what the result of an action will 
be?
▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the ghosts respond randomly
▪ Actions can fail: when moving a robot, wheels might slip

▪ Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

▪ Expectimax search: compute the average score under 
optimal play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

▪ Later, we’ll learn how to formalize the underlying 
uncertain-result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100
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Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:
  p = probability(successor)

v += p * value(successor)
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v
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Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
  p = probability(successor)

v += p * value(successor)
return v

5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

GWU AI 7



Expectimax Example

12 9 6 03 2 154 6
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Expectimax Pruning?

12 93 2
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Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true 
expectimax value 

(which would 
require a lot of 

work to compute)
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Probabilities
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Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown
▪ A probability distribution is an assignment of weights to outcomes

▪ Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

▪ Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

▪ As we get more evidence, probabilities may change:
▪ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25
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▪ The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:

35 minx x x+ +
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Expected Value Computation Quiz

▪ P(X = m) = 1/2m // For all m ≥ 1

▪ Clearly, Σ 11<= m <= infinity(P(X = m)) = 1

▪ E(X) = ?
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▪ In expectimax search, we have a probabilistic model 
of how the opponent (or environment) will behave in 
any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of 

computation
▪ We have a chance node for any outcome out of our control: 

opponent or environment
▪ The model might say that adversarial actions are likely!

▪ For now, assume each chance node magically comes 
along with probabilities that specify the distribution 
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about another 
agent’s action does not mean that the 

agent is flipping any coins!
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Informed Probabilities

▪ Let’s say you know that your opponent is actually running a depth 2 minimax, using the 
result 80% of the time, and moving randomly otherwise

▪ What tree search should you use?  

0.1          0.9

▪ Answer: Expectimax!

▪ To figure out EACH chance node’s probabilities, 
you have to run a simulation of your opponent

▪ This kind of thing gets very slow very quickly

▪ Even worse if you have to simulate your 
opponent simulating you…

▪ … except for minimax, which has the nice 
property that it all collapses into one game tree
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Other Related Topics
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How to handle:

• Mixed layer types

• Mixed agent utilities for 

a multi agent game



Mixed Layer Types

▪ For example: backgammon

▪ Expectiminimax

▪ Environment is an extra “random 
agent” player that moves after 
each min/max agent

▪ Each node computes the 
appropriate combination of its 
children
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Example: Backgammon

▪ Dice rolls increase b: 21 possible rolls with 2 dice

▪ Backgammon  20 legal moves

▪ Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

▪ As depth increases, probability of reaching a given 
search node shrinks

▪ So usefulness of search is diminished

▪ So limiting depth is less damaging

▪ But pruning is trickier…

▪ Historic AI: TDGammon uses depth-2 search + very 
good evaluation function + reinforcement 
learning:  world-champion level play

▪ 1st AI world champion in any game!

Image: Wikipedia
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Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5
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UTILITIES
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Maximum Expected Utility

▪ Principle of maximum expected utility:
▪ A rational agent should choose the action that maximizes its 

expected utility, given its knowledge

▪ Things to consider:
▪ So far, we know “outcomes” and probabilities”, so how should we 

define this concept of “utility”?

▪ How do we know such utilities even exist?

▪ How do we know that averaging (“expected” utility) even makes 
sense?

▪ What if our behavior (preferences) can’t be described by utilities?
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Utilities

▪ Utilities are functions from outcomes 
(states of the world) to real numbers 
that describe an agent’s preferences

▪ Where do utilities come from?
▪ In a game, may be simple (+1/-1)
▪ Utilities summarize the agent’s goals
▪ Theorem: any “rational” preferences can be 

summarized as a utility function

▪ We hard-wire utilities and let behaviors emerge
▪ Why don’t we let agents pick utilities?
▪ Why don’t we prescribe behaviors?
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What Utilities to Use?

▪ For worst-case minimax reasoning, terminal function scale doesn’t matter

▪ We just want better states to have higher evaluations (get the ordering right)

▪ We call this insensitivity to monotonic transformations

▪ For average-case expectimax reasoning, we need magnitudes to be meaningful

▪ This is a difference that we now need to understand and appreciate.
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What Utilities to Use?

▪ Utility Values 1 and Values 2 would give us the same answer if using Minimax.

▪ But, give us different answers when using  Expectimax.

▪ Although, the transformation is monotonic.

0 40 20 30 x2 0 1600 400 900
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Outcomes: Prizes and Lotteries

A                  B

p                1 - p

A LotteryA Prize

A
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Preferences

▪ An agent must have preferences among:

▪ Prizes: A, B, etc.

▪ Lotteries: situations with uncertain prizes

 L1 = [p, A; (1-p), B]

 L2 = [0.2, A; 0.5, B; 0.3, L1]

▪ Notation:

▪ Preference: A ≻ L1

▪ Indifference: L2 ~ B
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Our Example

▪ L1 = [100% $1Billion, 0 % 0]

▪ L2 = [50% 0 $, 50%  $10 Billion]

▪ Most people prefer L1 over L2.
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RATIONAL PREFERENCES

How do we know our preferences are “rational”?
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▪ We want some constraints on preferences before we call them rational, such as:

▪ For example: an agent with intransitive preferences can
 be induced to give away all of its money

▪ If B > C, then an agent with C would pay (say) 1 cent to get B

▪ If A > B, then an agent with B would pay (say) 1 cent to get A

▪ If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

)()()( CACBBA  Axiom of Transitivity:
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Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality
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▪ Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
▪ Given any preferences satisfying these constraints, there exists a real-valued
 function U such that:

▪ I.e. values assigned by U preserve preferences of both prizes and lotteries!

▪ Maximum expected utility (MEU) principle:
▪ Choose the action that maximizes expected utility
▪ Note: an agent can be entirely rational (consistent with MEU) without ever representing or 

manipulating utilities and probabilities
▪ E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle
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HUMAN UTILITIES

How do humans behave when thinking about utilities?
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▪ Utilities map states to real numbers. Which numbers?

▪ Standard approach to assessment (elicitation) of human utilities:

▪ Compare a prize A to a standard lottery Lp between

▪ “best possible prize” u+ with probability p

▪ “worst possible catastrophe” u- with probability 1-p

▪ Adjust lottery probability p until indifference: A ~ Lp

▪ Resulting p is a utility in [0,1]

Human Utilities

0.999999                              0.000001

No change

Pay $30

Instant death
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Money

▪ Money does not behave as a utility function, but we can talk about the 
utility of having money (or being in debt)

▪ Given a lottery L = [p, $X; (1-p), $Y]

▪ The expected monetary value EMV(L) is p*X + (1-p)*Y

▪ U(L) = p*U($X) + (1-p)*U($Y)

▪ Typically, U(L) < U( EMV(L) )

▪ In this sense, people are risk-averse

▪ When deep in debt, people are risk-prone
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Example: Insurance

▪ Consider the lottery [0.5, $1000;  0.5, $0]
▪ What is its expected monetary value?  ($500)

▪ What is its certainty equivalent?

▪ Monetary value acceptable in lieu of lottery

▪ $400 for most people

▪ Difference of $100 is the insurance premium

▪ There’s an insurance industry because people 
will pay to reduce their risk

▪ If everyone were risk-neutral, no insurance 
needed!

▪ It’s win-win: you’d rather have the $400 and 
the insurance company would rather have the 
lottery (their utility curve is flat and they have 
many lotteries)
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Not a Discrepancy!

▪ This is not a discrepancy!  It merely conveys that for the person 
taking the survey:

▪ U($1000) ~ 2 * U($400)
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Choose one

▪ Option 1: Win (with 50% probability) two billion dollars, or 
Option 2: Win (with 100% probability) one billion dollars

▪ L1 = L[0.5, 0B; 0.5, 2B]

▪ L2 = L[1.0, 1B; 0, 0$] 

▪ For most people, U(L1) < U(L2), though EMV(L1) = EMV(L2)

▪ 0.5 U(2B) < U(1B)

▪ In fact, for most people:

▪ U(L[0.9, 0B; 0.1, 100B]) < U(L[1.0, 1B; 0, 0$]), though 
EMV(L1) = 10B, EMV(L2) = 1B
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Example: Human Rationality?

▪ Given
▪ A: [0.8, $4k;    0.2, $0]
▪ B: [1.0, $3k;    0.0, $0]

▪ Which one do you choose?

▪ Given
▪ C: [0.2, $4k;    0.8, $0]
▪ D: [0.25, $3k;    0.75, $0]

▪ Which one do you choose?
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Example: Human Rationality?

▪ Famous example of Allais (1953)

▪ A: [0.8, $4k;    0.2, $0]
▪ B: [1.0, $3k;    0.0, $0]

▪ C: [0.002, $4k;    0.8, $0]
▪ D: [0.0025, $3k;    0.75, $0]

▪ Most people prefer B > A, C > D

▪ But if U($0) = 0, then
▪ B > A  U($3k) > 0.8 U($4k)
▪ C > D  0.8 U($4k) > U($3k)
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Probability & Belief State

▪ Objectivist / frequentist answer:
▪ Averages over repeated experiments

▪ E.g., empirically estimating P(rain) from historical observation

▪ Assertion about how future experiments will go (in the limit)

▪ New evidence changes the reference class

▪ Makes one think of inherently random events, like rolling dice

▪ Subjectivist / Bayesian answer:
▪ Degrees of belief about unobserved variables

▪ E.g. an agent’s belief that it’s raining, given the temperature

▪ E.g. pacman’s belief that the ghost will turn left, given the state

▪ Often learn probabilities from past experiences (more later)

▪ New evidence updates beliefs (more later)
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Practical Perspective: Utility Scales

▪ Normalized utilities: u+ = 1.0, u- = 0.0
▪ Micromorts: one-millionth chance of death, useful for 

paying to reduce product risks, etc.
▪ https://www.stubbornmule.net/2010/12/micromorts/

▪ QALYs: quality-adjusted life years, useful for medical 
decisions involving substantial risk

▪ Note: behavior is invariant under positive linear 
transformation

▪ With deterministic prizes only (no lottery choices), only 
ordinal utility can be determined, i.e., total order on prizes
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Uncertainty Everywhere

▪ Not just for games of chance!
▪ I’m sick: will I sneeze this minute?
▪ Email contains “FREE!”: is it spam?
▪ Tooth hurts: have cavity?
▪ 60 min enough to get to the airport?
▪ Robot rotated wheel three times, how far did it advance?
▪ Safe to cross street? (Look both ways!)

▪ Sources of uncertainty in random variables:
▪ Inherently random process (dice, etc)
▪ Insufficient or weak evidence
▪ Ignorance of underlying processes
▪ Unmodeled variables
▪ The world’s just noisy – it doesn’t behave according to plan!

▪ Compare to fuzzy logic, which has degrees of truth, rather than just degrees of belief

GWU AI 43


	Slide 1: CS 6511: Artificial Intelligence 
	Slide 2: Course Outline
	Slide 3: Outcomes Based on Chance
	Slide 4: Worst-Case vs. Average Case
	Slide 5: Expectimax Search
	Slide 6: Expectimax Pseudocode
	Slide 7: Expectimax Pseudocode
	Slide 8: Expectimax Example
	Slide 9: Expectimax Pruning?
	Slide 10: Depth-Limited Expectimax
	Slide 11: Probabilities
	Slide 12: Reminder: Probabilities
	Slide 13: Reminder: Expectations
	Slide 14: Expected Value Computation Quiz
	Slide 15: What Probabilities to Use?
	Slide 16: Informed Probabilities
	Slide 17: Other Related Topics
	Slide 18: Mixed Layer Types
	Slide 19: Example: Backgammon
	Slide 20: Multi-Agent Utilities
	Slide 21: Utilities
	Slide 22: Maximum Expected Utility
	Slide 23: Utilities
	Slide 24: What Utilities to Use?
	Slide 25: What Utilities to Use?
	Slide 26: Outcomes: Prizes and Lotteries
	Slide 27: Preferences
	Slide 28: Our Example
	Slide 29: Rational PREFERENCES
	Slide 30: Rational Preferences
	Slide 31: Rational Preferences
	Slide 32: MEU Principle
	Slide 33: HUMAN UTILITIES
	Slide 34: Human Utilities
	Slide 35: Money
	Slide 36: Example: Insurance
	Slide 37: Not a Discrepancy!
	Slide 38: Choose one
	Slide 39: Example: Human Rationality?
	Slide 40: Example: Human Rationality?
	Slide 41: Probability & Belief State
	Slide 42: Practical Perspective: Utility Scales
	Slide 43: Uncertainty Everywhere

