

# CS 6511: Artificial Intelligence

# Markov Decision Processes

Amrinder Arora The George Washington University

[An original version of slides by Dan Klein and Pieter Abbeel for UC Berkeley. <u>http://ai.berkeley.edu]</u> Outline



# What We Know

- We understand rational agent design
  - Environment types
  - Objectives
- We can search really well
  - In Uninformed settings
  - In Informed settings
  - When there are constraints
  - When the setting is that of adversarial nature

# What We Are Missing

- Environments are not always deterministic
- Rules are not always well known
- More interim layers (which add complexity)

# MDPs – Topics Outline

- 1. MDPs: Model and Example (Definition)
- 2. Utility Function for a Sequence (and Discounting)
- 3. Policy versus Sequence
- 4. Solving MDPs Optimal Quantities: V, S, Q and R values
- 5. Solving Faster (Policy Iteration, vs. Value Iteration)
- 6. Variants of MDPs

# Example: Grid World

- A maze-like problem
  - The agent lives in a grid
  - Walls block the agent's path
- Noisy movement: actions do not always go as planned
  - 80% of the time, the action North takes the agent North (if there is no wall there)
  - 10% of the time, North takes the agent West; 10% East
  - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
  - Small "living" reward each step (can be negative)
  - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



# Grid World Actions



#### Stochastic Grid World



#### **Markov Decision Processes**

- An MDP is defined by:
  - A set of states s ∈ S
  - A set of actions  $a \in A$
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s'| s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')
  - A start state
  - Maybe a terminal state
- MDPs are non-deterministic search problems
  - One way to solve them is with expectimax search
  - We'll have a new tool soon



# Why Study MDPs at all?

Stochastic environment can in fact be solved using Expectimax, so no reason to study MDPs if such problems were rare (say, once every 5 years).

#### But:

- 1. MDPs are very common, and solution involving them is MUCH faster than just an expectimax search.
- 2. Studying MDPs allows us to learn other techniques that can be used when the environment is unknown.

# What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$



Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

=

 $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$ 

# Markov, Markov and Chebyshev

- https://en.wikipedia.org/wiki/Andrey Markov
- https://en.wikipedia.org/wiki/Vladimir Markov (mathematician)
- https://en.wikipedia.org/wiki/Pafnuty\_Chebyshev

$$\Pr(|X-\mathbf{E}(X)|\geq a\,\sigma)\leq rac{1}{a^2}.$$

# **Example:** Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*







#### **MDP Search Trees**



# MDPs – Topics Outline

- 1. MDPs: Model and Example (Definition)
- 2. Utility Function for a Sequence (and Discounting)
- 3. Policy versus Sequence
- 4. Solving MDPs Optimal Quantities: V, S, Q and R values
- 5. Solving Faster (Policy Iteration, vs. Value Iteration)
- 6. Variants of MDPs

# **Utilities of Sequences**



# **Utilities of Sequences**

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]
- 1, 2, 3,1,4 or 2, 2, 2, 2, 2
  - 1+2\*0.9+3\*0.9\*0.9+1\*0.9\*0.9\*0.94\*
  - Vs.
  - 2 + 2 \* 0.9 + 2\*0.9^2
- $1_{ATO} = 3_{49} + 5_{1/65} + 2,2$



# Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially



# Discounting

- How to discount?
  - Each time we descend a level, we multiply in the discount once
- Why discount?
  - Sooner rewards probably do have higher utility than later rewards
  - Also helps our algorithms converge
- Example: discount of 0.5
  - U([1,2,3]) = 1\*1 + 0.5\*2 + 0.25\*3
  - U([1,2,3]) < U([3,2,1])</p>



## **Stationary Preferences**

Stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



In other words, the prioritization does not change with time, so the preferences are "stationary"

# **Characterizing Stationary Preferences**

Theorem: if we assume stationary preferences:



- Then: there are only two ways to define utilities
  - Additive utility:  $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
  - Discounted utility:  $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

## Utility Sequence Examples

- 1. Gamma = 0.9
  - a) [1, 1, 2, 4] = 6.436
  - b) [2, 1, 3, 4] = 8.246
- 2. Gamma = 0.8
  - a) [a, b, c, d] = a + 0.8^1 \* b + 0.8^2 \* c + 0.8^3 \* d
    b) [2, 1, 1, 1] = 3.95
- 3. Gamma = 0.7
  - a) [1, 2, 2, 1] = 3.723
  - b) [2, 1, 2, 1] = 4.023

# Quiz: Discounting

• Given:



- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For  $\gamma = 1$ , what is the optimal policy?



• Quiz 2: For  $\gamma$  = 0.1, what is the optimal policy?



Quiz 3: For which γ are West and East equally good when in state d?

# Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
  - Finite horizon: (similar to depth-limited search)
    - Terminate episodes after a fixed T steps (e.g. life)
    - Gives nonstationary policies (π depends on time left)
  - Discounting: use  $0 < \gamma < 1$   $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$ 
    - Smaller γ means smaller "horizon" shorter term focus
  - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Arora - AI - 4511/6511





# **Recap: Defining MDPs**

- Markov decision processes:
  - Set of states S
  - Start state s<sub>0</sub>
  - Set of actions A
  - Transitions P(s'|s,a) (or T(s,a,s'))
  - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
  - Policy = Choice of action for each state
  - Utility = sum of (discounted) rewards



# MDPs – Topics Outline

- 1. MDPs: Model and Example (Definition)
- 2. Utility Function for a Sequence (and Discounting)
- 3. Policy versus Sequence
- 4. Solving MDPs Optimal Quantities: V, S, Q and R values
- 5. Solving Faster (Policy Iteration, vs. Value Iteration)
- 6. Variants of MDPs

# Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy  $\pi^*: S \rightarrow A$ 
  - A policy π gives an action for each state
  - An optimal policy is one that maximizes expected utility if followed
  - An explicit policy defines a reflex agent
- So far, we computed actions, not policies



Optimal policy when R(s, a, s') = -0.03 for all nonterminals s

#### **Optimal Policies**



R(s) = -0.01



$$R(s) = -0.4$$



R(s) = -0.03



# MDPs – Topics Outline

- 1. MDPs: Model and Example (Definition)
- 2. Utility Function for a Sequence (and Discounting)
- 3. Policy versus Sequence
- 4. Solving MDPs Optimal Quantities: V, S, Q and R values
- 5. Solving Faster (Policy Iteration, vs. Value Iteration)
- 6. Variants of MDPs

# **Optimal Quantities**

- The value (utility) of a state s:
   V\*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q<sup>\*</sup>(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:
 π<sup>\*</sup>(s) = optimal action from state s



## Values of States

- Fundamental operation: compute the (expectimax) value of a state
  - Expected utility under optimal action
  - Average sum of (discounted) rewards
  - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$







- We're doing way too much work with expectimax!
- Problem: States are repeated
  - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
  - Idea: Do a depth-limited computation, but with increasing depths until change is small
  - Note: deep parts of the tree eventually don't matter if γ < 1</li>



### **Time-Limited Values**

- Key idea: time-limited values
- Define V<sub>k</sub>(s) to be the optimal value of s if the game ends in k more time steps
  - Equivalently, it's what a depth-k expectimax would give from s





#### k=0

| 0 | Gridworld Display |           |           |      |  |  |
|---|-------------------|-----------|-----------|------|--|--|
| - |                   |           |           |      |  |  |
|   | •                 | •<br>0.00 | •<br>0.00 | 0.00 |  |  |
|   |                   |           | <b>^</b>  |      |  |  |
|   | 0.00              |           | 0.00      | 0.00 |  |  |
|   |                   |           |           |      |  |  |
|   | 0.00              | 0.00      | 0.00      | 0.00 |  |  |

VALUES AFTER 0 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0
| 0 | 0         | Gridworl  | d Display |       |
|---|-----------|-----------|-----------|-------|
|   | ▲<br>0.00 | ▲<br>0.00 | 0.00 )    | 1.00  |
|   | •<br>0.00 |           | ∢ 0.00    | -1.00 |
|   | •<br>0.00 | •<br>0.00 | •         | 0.00  |

VALUES AFTER 1 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0<sub>87</sub>

| 0                         | Gridworl | d Display |          |
|---------------------------|----------|-----------|----------|
|                           |          |           |          |
| 0.00                      | 0.00 →   | 0.72 →    | 1.00     |
|                           |          | <b>^</b>  |          |
| 0.00                      |          | 0.00      | -1.00    |
|                           |          |           |          |
| 0.00                      | 0.00     | 0.00      | 0.00     |
|                           |          |           | <b>•</b> |
| VALUES AFTER 2 ITERATIONS |          |           |          |

k=3

| 0 | Gridworld Display |           |           |       |   |  |
|---|-------------------|-----------|-----------|-------|---|--|
|   | 0.00 >            | 0.52 →    | 0.78 →    | 1.00  |   |  |
|   | •                 |           | •<br>0.43 | -1.00 | ľ |  |
|   | •<br>0.00         | •<br>0.00 | •<br>0.00 | 0.00  |   |  |
|   | VALUE             | S AFTER   | 3 ITERA   | LIONS |   |  |

V(2,3, k=3) = 0.72 \* 0.8 \* 0.9 + 0.9 \* 0.1 \* -1 + 0.9 \* 0.1 \* 0

### Code

- For iteration k = 1 to 100
  - Update matrix

## **Update Matrix**

#### For row = 1 to 4

- For column = 1 to 4 // These two loops together, give us O(S)
  - Update Q\_k(a) for Cell (i,j) // Thie one is O(A \* S)
  - // O(A) because there are A actions
  - // O(S) for one Q\_k(a)
  - Update V\_k for Cell(i,j) // This one is O(A)
  - Total time complexity = O(S) \* (O(AS) + O(A))

k=4

| C C Gridworld Display     |        |           |        |  |  |
|---------------------------|--------|-----------|--------|--|--|
| 0.37 ▸                    | 0.66 ) | 0.83 )    | 1.00   |  |  |
| •                         |        | •<br>0.51 | -1.00  |  |  |
| •                         | 0.00 > | •<br>0.31 | ∢ 0.00 |  |  |
| VALUES AFTER 4 ITERATIONS |        |           |        |  |  |

| 0 0                       | Gridworl | d Display |        |  |
|---------------------------|----------|-----------|--------|--|
| 0.51 )                    | 0.72 →   | 0.84 )    | 1.00   |  |
| •<br>0.27                 |          | •<br>0.55 | -1.00  |  |
| •                         | 0.22 →   | ▲<br>0.37 | ∢ 0.13 |  |
| VALUES AFTER 5 TTERATIONS |          |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 043

| 0 0                       | Gridworl | d Display |        |  |
|---------------------------|----------|-----------|--------|--|
| 0.59 ▸                    | 0.73 )   | 0.85 )    | 1.00   |  |
| •<br>0.41                 |          | •<br>0.57 | -1.00  |  |
| •<br>0.21                 | 0.31 )   | •<br>0.43 | ∢ 0.19 |  |
| VALUES AFTER 6 ITERATIONS |          |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 044

| 0 0                       | Gridworl | d Display | -      |  |
|---------------------------|----------|-----------|--------|--|
| 0.62 ▸                    | 0.74 )   | 0.85 )    | 1.00   |  |
| •<br>0.50                 |          | •<br>0.57 | -1.00  |  |
| •<br>0.34                 | 0.36 )   | •<br>0.45 | ◀ 0.24 |  |
| VALUES AFTER 7 ITERATIONS |          |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 045

| 0 0                       | Gridworl | d Display |        |  |
|---------------------------|----------|-----------|--------|--|
| 0.63                      | ▶ 0.74 ▶ | 0.85 )    | 1.00   |  |
| •<br>0.53                 |          | •<br>0.57 | -1.00  |  |
| ▲<br>0.42                 | 0.39 )   | ▲<br>0.46 | ∢ 0.26 |  |
| VALUES AFTER 8 ITERATIONS |          |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 046

| 0 0                       | Gridworl | d Display    | -      |  |
|---------------------------|----------|--------------|--------|--|
| 0.64 →                    | 0.74 ▸   | 0.85 )       | 1.00   |  |
| <b>^</b>                  |          | <b>^</b>     |        |  |
| 0.55                      |          | 0.57         | -1.00  |  |
| • 0.46                    | 0.40 →   | <b>0.</b> 47 | ◀ 0.27 |  |
| VALUES AFTER 9 ITERATIONS |          |              |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 047

Arora – AI – 4511/6511

| 0                          | Gridworl | d Display |        |  |
|----------------------------|----------|-----------|--------|--|
| 0.64 )                     | 0.74 ▸   | 0.85 )    | 1.00   |  |
| <b>^</b>                   |          | <b>^</b>  |        |  |
| 0.56                       |          | 0.57      | -1.00  |  |
| <b>^</b>                   |          |           |        |  |
| 0.48                       | ∢ 0.41   | 0.47      | ◀ 0.27 |  |
| VALUES AFTER 10 ITERATIONS |          |           |        |  |

| 0 0                        | Gridworl | d Display | -      |  |
|----------------------------|----------|-----------|--------|--|
| 0.64 )                     | 0.74 )   | 0.85 )    | 1.00   |  |
| <b>^</b>                   |          | •         |        |  |
| 0.56                       |          | 0.57      | -1.00  |  |
| ▲<br>0.48                  | ∢ 0.42   | •<br>0.47 | ∢ 0.27 |  |
| VALUES AFTER 11 ITERATIONS |          |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 049

| 0 0       | Gridworl | d Display |        |
|-----------|----------|-----------|--------|
| 0.64 ▸    | 0.74 →   | 0.85 )    | 1.00   |
| •<br>0.57 |          | •<br>0.57 | -1.00  |
| • 0.49    | ◀ 0.42   | •<br>0.47 | ∢ 0.28 |
| VALUE     | S AFTER  | 12 ITERA  | TIONS  |

Noise = 0.2 Discount = 0.9 Living reward = 050

Arora – AI – 4511/6511

| 0.0       | Gridworl | d Display |        |
|-----------|----------|-----------|--------|
| 0.64 )    | 0.74 ▸   | 0.85 )    | 1.00   |
| •<br>0.57 |          | •<br>0.57 | -1.00  |
| ▲<br>0.49 | ∢ 0.43   | •<br>0.48 | ∢ 0.28 |

VALUES AFTER 100 ITERATIONS

# **Computing Time-Limited Values**



### Value Iteration



# Value Iteration

- Start with V<sub>0</sub>(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V<sub>k</sub>(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S<sup>2</sup>A)
- Theorem: will converge to unique optimal values
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do



### **Example: Value Iteration**



# Convergence\*

- How do we know the V<sub>k</sub> vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V<sub>M</sub> holds the actual untruncated values
- Case 2: If the discount is less than 1
  - Sketch: For any state V<sub>k</sub> and V<sub>k+1</sub> can be viewed as depth k+1 expectimax results in nearly identical search trees
  - The difference is that on the bottom layer, V<sub>k+1</sub> has actual rewards while V<sub>k</sub> has zeros
  - That last layer is at best all R<sub>MAX</sub>
  - It is at worst R<sub>MIN</sub>
  - But everything is discounted by γ<sup>k</sup> that far out
  - So  $V_k$  and  $V_{k+1}$  are at most  $\gamma^k \max |R|$  different
  - So as k increases, the values converge



# **Optimal Quantities**

- The value (utility) of a state s:
   V\*(s) = expected utility starting in s and
  - acting optimally
- The value (utility) of a q-state (s,a):

Q<sup>\*</sup>(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

• The optimal policy:  $\pi^*(s) = optimal action from state s$ 



# Gridworld Values V\*

| 0                           | Gridworld Display |          |        |  |  |
|-----------------------------|-------------------|----------|--------|--|--|
|                             |                   |          |        |  |  |
| 0.64 ▶                      | 0.74 ▶            | 0.85 →   | 1.00   |  |  |
|                             |                   | <b>^</b> |        |  |  |
| 0.57                        |                   | 0.57     | -1.00  |  |  |
| <b>^</b>                    |                   | <b>^</b> |        |  |  |
| 0.49                        | <b>∢</b> 0.43     | 0.48     | ∢ 0.28 |  |  |
| VALUES AFTER 100 ITERATIONS |                   |          |        |  |  |

# Gridworld: Q\*



# Q\*(s,a) Code

- For i = 1 to n // All states. S \* A \* S
  - For j = 1 to m // All Actions A
    - Q(i,j) = Sum over all States S (k) { T(i,j,k) \* (R (i,j,k) + Gamma \* V(k)) }
      - // For loop over all k

- For i = 1 to n // All states. S \* A
  - For j = 1 to m // All Actions A
    - V(i) = max {V(i), Q(i,j))}
- Total time is O(S<sup>2</sup> A)

# The Bellman Equations



# The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
  

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$
  

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

# Value Iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
  - ... though the V<sub>k</sub> vectors are also interpretable as time-limited values



# Convergence\*

- How do we know the V<sub>k</sub> vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V<sub>M</sub> holds the actual untruncated values
- Case 2: If the discount is less than 1
  - Sketch: For any state V<sub>k</sub> and V<sub>k+1</sub> can be viewed as depth k+1 expectimax results in nearly identical search trees
  - The difference is that on the bottom layer, V<sub>k+1</sub> has actual rewards while V<sub>k</sub> has zeros
  - That last layer is at best all R<sub>MAX</sub>
  - It is at worst R<sub>MIN</sub>
  - But everything is discounted by γ<sup>k</sup> that far out
  - So  $V_k$  and  $V_{k+1}$  are at most  $\gamma^k$  max | R | different
  - So as k increases, the values converge



# MDPs – Topics Outline

- 1. MDPs: Model and Example (Definition)
- 2. Utility Function for a Sequence (and Discounting)
- 3. Policy versus Sequence
- 4. Solving MDPs Optimal Quantities: V, S, Q and R values
- 5. Solving Faster (Policy Iteration, vs. Value Iteration)
- 6. Variants of MDPs

# **Policy Iteration**



# Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

Observation 1: It's slow – O(S<sup>2</sup>A) per iteration



- Observation 2: The "max" at each state rarely changes
- Observation 3: The policy often converges long before the values

| Gridworld Display |      |      |      |  |
|-------------------|------|------|------|--|
| _                 |      |      |      |  |
| •                 | •    | •    | 0.00 |  |
| <b>^</b>          |      |      |      |  |
| 0.00              |      | 0.00 | 0.00 |  |
|                   |      |      |      |  |
| 0.00              | 0.00 | 0.00 | 0.00 |  |

VALUES AFTER 0 ITERATIONS

| 0 | C C Gridworld Display     |           |           |       |  |  |
|---|---------------------------|-----------|-----------|-------|--|--|
|   | •<br>0.00                 | •<br>0.00 | 0.00 >    | 1.00  |  |  |
|   | •<br>0.00                 |           | ∢ 0.00    | -1.00 |  |  |
|   | •                         | •<br>0.00 | •<br>0.00 | 0.00  |  |  |
|   | VALUES AFTER 1 ITERATIONS |           |           |       |  |  |

| 000   | Gridworl | d Display |       |                                                  |
|-------|----------|-----------|-------|--------------------------------------------------|
|       |          |           |       |                                                  |
| •     | 0.00 →   | 0.72 →    | 1.00  |                                                  |
|       |          |           |       |                                                  |
| 0.00  |          | 0.00      | -1.00 | Noise = 0.2<br>Discount = 0.9<br>Living reward = |
|       |          |           |       |                                                  |
| 0.00  | 0.00     | 0.00      | 0.00  |                                                  |
|       |          |           | -     |                                                  |
| VALUE | S AFTER  | 2 ITERA   | TIONS |                                                  |

0

k=3

| 00 | 0         | Gridworl  | d Display |       |                                          |
|----|-----------|-----------|-----------|-------|------------------------------------------|
|    | 0.00 >    | 0.52 →    | 0.78 →    | 1.00  |                                          |
|    | •         |           | ▲<br>0.43 | -1.00 | Noise = 0.2<br>Discount =<br>Living rewa |
|    | •<br>0.00 | •<br>0.00 | •<br>0.00 | 0.00  |                                          |
|    | VALUE     | S AFTER   | 3 ITERA   | TIONS |                                          |

0.9 rd = 0

k=4

| O Gridworld Display       |        |           |        |  |  |
|---------------------------|--------|-----------|--------|--|--|
| 0.37 ▸                    | 0.66 ) | 0.83 )    | 1.00   |  |  |
| • 0.00                    |        | •<br>0.51 | -1.00  |  |  |
| •<br>0.00                 | 0.00 → | •<br>0.31 | ∢ 0.00 |  |  |
| VALUES AFTER A TTERATIONS |        |           |        |  |  |
| 0 0       | O Gridworld Display       |           |        |  |
|-----------|---------------------------|-----------|--------|--|
| 0.51 )    | 0.72 )                    | 0.84 )    | 1.00   |  |
| •<br>0.27 |                           | •<br>0.55 | -1.00  |  |
| •         | 0.22 →                    | •<br>0.37 | ∢ 0.13 |  |
| VALUE     | VALUES AFTER 5 TTERATIONS |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

#### k=9

| O O Gridworld Display     |        |           |        |
|---------------------------|--------|-----------|--------|
| 0.64 ▸                    | 0.74 ▸ | 0.85 )    | 1.00   |
| •                         |        | •<br>0.57 | -1.00  |
| •<br>0.46                 | 0.40 → | •<br>0.47 | ∢ 0.27 |
| VALUES AFTER 9 ITERATIONS |        |           |        |

Noise = 0.2 Discount = 0.9 Living reward = 0

#### k=12

| 000       | Gridworl | d Display |        |                                    |
|-----------|----------|-----------|--------|------------------------------------|
| 0.64 )    | 0.74 )   | 0.85 )    | 1.00   |                                    |
| •<br>0.57 |          | •<br>0.57 | -1.00  | Noise = (<br>Discount<br>Living re |
| •<br>0.49 | ∢ 0.42   | •<br>0.47 | ∢ 0.28 |                                    |
| VALUE     | S AFTER  | 12 ITERA  | TIONS  |                                    |

.2 = 0.9 vard = 0

#### k=100

| 0 0       | O Gridworld Display |           |        |
|-----------|---------------------|-----------|--------|
| 0.64 →    | 0.74 ▸              | 0.85 )    | 1.00   |
| •<br>0.57 |                     | ▲<br>0.57 | -1.00  |
| • 0.49    | ∢ 0.43              | •<br>0.48 | ∢ 0.28 |

VALUES AFTER 100 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

### Policy Methods



#### **Policy Evaluation**



#### **Fixed Policies**

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy  $\pi(s)$ , then the tree would be simpler only one action per state
  - ... though the tree's value would depend on which policy we fixed

Do the optimal action

Do what  $\boldsymbol{\pi}$  says to do





Arora - AI - 4511/6511

GWU

#### **Utilities for a Fixed Policy**

- Another basic operation: compute the utility of a state s under a fixed (generally nonoptimal) policy
- Define the utility of a state s, under a fixed policy π:
  V<sup>π</sup>(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



### Example: Policy Evaluation

Always Go Right

Always Go Forward



#### **Example: Policy Evaluation**

#### Always Go Right

| -10.00 | 100.00  | -10.00 |
|--------|---------|--------|
| -10.00 | 1.09 🕨  | -10.00 |
| -10.00 | -7.88 ▶ | -10.00 |
| -10.00 | -8.69 ▶ | -10.00 |

#### Always Go Forward



## **Policy Evaluation**

- How do we calculate the V's for a fixed policy  $\pi$ ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$
  
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S<sup>2</sup>) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
  - Solve with Matlab (or your favorite linear system solver)

Arora - AI - 4511/6511

**π(s)** 

s, π(s)

### **Policy Extraction**



#### Arora – AI – 4511/6511

#### **Computing Actions from Values**

- Let's imagine we have the optimal values V\*(s)
- How should we act?
  - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

### **Computing Actions from Q-Values**

- Let's imagine we have the optimal q-values:
- How should we act?
  - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



#### Important lesson: actions are easier to select from q-values than values!

### **Policy Iteration**

- Alternative approach for optimal values:
  - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
  - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
  - Repeat steps until policy converges
- This is policy iteration
  - It's still optimal!
  - Can converge (much) faster under some conditions

#### **Policy Iteration**

- Evaluation: For fixed current policy  $\pi$ , find values with policy evaluation:
  - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
  - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

### Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
  - Every iteration updates both the values and (implicitly) the policy
  - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
  - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
  - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
  - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

#### MDPs – Topics Outline

- 1. MDPs: Model and Example (Definition)
- 2. Utility Function for a Sequence (and Discounting)
- 3. Policy versus Sequence
- 4. Solving MDPs Optimal Quantities: V, S, Q and R values
- 5. Solving Faster (Policy Iteration, vs. Value Iteration)
- 6. Variants of MDPs

#### Variant 1: MDPs for Continuous World

Two Basic Ideas here..

- Either discretize the world (self driving helicopter can increase its altitude only in chunks of 10 cm.)
- Or, use integration (instead of summation) and use the probability distribution (instead of defined Transition Probability table)

#### Variant 2: Partially Observable MDPs

- In addition to the usual MDPs, we are also given:
  - Sensor Model P(e | s)
- But first, one quiz...

#### **Bayes Theorem**

- Antonio has an exciting soccer game coming up. In recent years, it has rained only 5 days each year in the city where they live.
- Unfortunately, the weatherperson has predicted rain for that day. When it actually rains, she correctly forecasts rain 90% of the time. When it doesn't rain, she incorrectly forecasts rain 10% of the time.
- What is the probability that it will rain on the day of Antonio's soccer game?

#### Answer!



#### So, what if we don't know T values!

- We can infer it.
- (Slowly)

#### **Double Bandits**



#### Double-Bandit MDP



# **Offline Planning**

#### Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!





#### **Other Variants**

- What if we don't know what actuators do
- What if we don't know the reward values

### Let's Play!





\$2 \$2 \$0 \$2 \$2\$2 \$2 \$0 \$0 \$0

### **Online Planning**

Rules changed! Red's win chance is different.



### Let's Play!





# \$0 \$0 \$0 \$2 \$0\$2 \$0 \$0 \$0 \$0

#### We can Learn!

- That wasn't planning, it was learning!
  - Specifically, reinforcement learning
  - There was an MDP, but you couldn't solve it with just computation
  - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
  - Exploration: you have to try unknown actions to get information
  - Exploitation: eventually, you have to use what you know
  - Regret: even if you learn intelligently, you make mistakes
  - Sampling: because of chance, you have to try things repeatedly
  - Difficulty: learning can be much harder than solving a known MDP



### Summary: MDP Algorithms

#### So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

#### These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

#### Next Topic: Reinforcement Learning!

Next Topic!