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What We Know

▪ We understand rational agent design

▪ Environment types

▪ Objectives

▪ We can search really well

▪ In Uninformed settings

▪ In Informed settings

▪ When there are constraints

▪ When the setting is that of adversarial nature
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What We Are Missing

▪ Environments are not always deterministic

▪ Rules are not always well known

▪ More interim layers (which add complexity)
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MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs
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Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North 
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards
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Grid World Actions

Deterministic Grid World Stochastic Grid World
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Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon
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Why Study MDPs at all?

Stochastic environment can in fact be solved using Expectimax, so 
no reason to study MDPs if such problems were rare (say, once 
every 5 years).

But:

1. MDPs are very common, and solution involving them is MUCH 
faster than just an expectimax search.

2. Studying MDPs allows us to learn other techniques that can be 
used when the environment is unknown.
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What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future 
and the past are independent

▪ For Markov decision processes, “Markov” means action outcomes 
depend only on the current state

▪ This is just like search, where the successor function could only depend on the current 
state (not the history)

Andrey Markov 
(1856-1922)
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Markov, Markov and Chebyshev

▪ https://en.wikipedia.org/wiki/Andrey_Markov 

▪ https://en.wikipedia.org/wiki/Vladimir_Markov_(mathematician)

▪ https://en.wikipedia.org/wiki/Pafnuty_Chebyshev

https://en.wikipedia.org/wiki/Andrey_Markov
https://en.wikipedia.org/wiki/Vladimir_Markov_(mathematician)
https://en.wikipedia.org/wiki/Pafnuty_Chebyshev
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Example: Racing

▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10
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Racing Search Tree
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MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state
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MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs
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Utilities of Sequences
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Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

▪ 1, 2, 3,1,4  or   2, 2, 2, 2,2

▪ 1 + 2 * 0.9 + 3 * 0.9 * 0.9  + 1 * 0.9 * 0.9 * 0.9 4 * 0.9^4

▪ Vs. 

▪ 2 + 2 * 0.9 + 2*0.9^2

▪ 1,2,3 or 2,2,2 

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Arora – AI – 4511/6511 GWU 18

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps
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Discounting

▪ How to discount?
▪ Each time we descend a level, we 

multiply in the discount once

▪ Why discount?

▪ Sooner rewards probably do have higher 
utility than later rewards

▪ Also helps our algorithms converge

▪ Example: discount of 0.5

▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

▪ U([1,2,3]) < U([3,2,1])
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Stationary Preferences

▪ Stationary preferences:

▪ In other words, the prioritization does not change with time, so the 
preferences are “stationary”
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Characterizing Stationary Preferences

▪ Theorem: if we assume stationary preferences:

▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:
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Utility Sequence Examples

1. Gamma = 0.9

a) [1, 1, 2, 4] = 6.436

b) [2, 1, 3, 4] = 8.246 

2. Gamma = 0.8

a) [a, b, c, d] = a + 0.8^1 * b + 0.8^2 * c + 0.8^3 * d

b) [2, 1, 1, 1] = 3.95

3. Gamma = 0.7

a) [1, 2, 2, 1] = 3.723

b) [2, 1, 2, 1] = 4.023
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Quiz: Discounting

▪ Given:

▪ Actions: East, West, and Exit (only available in exit states a, e)

▪ Transitions: deterministic

▪ Quiz 1: For  = 1, what is the optimal policy?

▪ Quiz 2: For  = 0.1, what is the optimal policy?

▪ Quiz 3: For which  are West and East equally good when in state d?
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Infinite Utilities?!

▪ Problem: What if the game lasts forever?  Do we get infinite rewards?

▪ Solutions:

▪ Finite horizon: (similar to depth-limited search)
▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies ( depends on time left)

▪ Discounting: use 0 <  < 1

▪ Smaller  means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually be 
reached (like “overheated” for racing)
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Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0

▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount )

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’
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MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs
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Policies

▪ In deterministic single-agent search 
problems, we wanted an optimal plan, or 
sequence of actions, from start to a goal

▪ For MDPs, we want an optimal policy *: S → 
A

▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes        
expected utility if followed

▪ An explicit policy defines a reflex agent

▪ So far, we computed actions, not policies

Optimal policy when R(s, a, s’) = -0.03 for all non-
terminals s
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Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01
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MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs
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Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state
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Values of States

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’

s’
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Racing Search Tree
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Racing Search Tree
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Racing Search Tree

▪ We’re doing way too much 
work with expectimax!

▪ Problem: States are repeated 
▪ Idea: Only compute needed 

quantities once

▪ Problem: Tree goes on forever

▪ Idea: Do a depth-limited 
computation, but with increasing 
depths until change is small

▪ Note: deep parts of the tree 
eventually don’t matter if γ < 1
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Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends in k 
more time steps

▪ Equivalently, it’s what a depth-k expectimax would give from s
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k=0

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=1

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=2

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

V(2,3, k=3) = 
0.72 * 0.8 * 0.9 
+ 0.9 * 0.1 * -1 
+ 0.9 * 0.1 * 0
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Code

▪ For iteration k = 1 to 100

▪ Update matrix
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Update Matrix

▪ For row = 1 to 4

▪ For column = 1 to 4   // These two loops together, give us O(S)

▪ Update Q_k(a) for Cell (i,j)  // Thie one is O(A * S)

▪ // O(A) because there are A actions

▪ // O(S) for one Q_k(a)

▪ Update V_k for Cell(i,j) // This one is O(A)

▪ Total time complexity = O(S) * (O(AS) + O(A))
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k=4

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=5

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=6

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=7

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=8

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=9

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=10

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=12

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=100

Noise = 0.2
Discount = 0.9
Living reward = 0
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Computing Time-Limited Values
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Value Iteration
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Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)
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Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!
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Convergence*

▪ How do we know the Vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth M, then VM holds the 
actual untruncated values

▪ Case 2: If the discount is less than 1

▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 
expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual 
rewards while Vk has zeros

▪ That last layer is at best all RMAX 

▪ It is at worst RMIN 

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge
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Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 

transition

s,a,s’

s is a 

state

(s, a) is a 

q-state
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Gridworld Values V*
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Gridworld: Q*
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Q*(s,a) Code

▪ For i = 1 to n // All states.    S * A * S

▪ For j = 1 to m // All Actions A

▪ Q(i,j) = Sum over all States S (k)  { T(i,j,k) * (R (i,j,k) + Gamma * V(k)) }
▪ // For loop over all k

▪ For i = 1 to n // All states.    S * A

▪ For j = 1 to m // All Actions A

▪ V(i) = max {V(i), Q(i,j))}

▪ Total time is O(S2 A)



Arora – AI – 4511/6511 GWU 61

The Bellman Equations

How to be optimal:

    Step 1: Take correct first action

    Step 2: Keep being optimal
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The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a simple 
one-step lookahead relationship amongst optimal utility values

▪ These are the Bellman equations, and they characterize optimal values in a 
way we’ll use over and over

 

a

s

s, a

s,a,s’

s’
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Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)
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Convergence*

▪ How do we know the Vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth M, then VM holds the 
actual untruncated values

▪ Case 2: If the discount is less than 1

▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 
expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual 
rewards while Vk has zeros

▪ That last layer is at best all RMAX 

▪ It is at worst RMIN 

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge
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MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs
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Policy Iteration
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Problems with Value Iteration

▪ Value iteration repeats the Bellman updates:

▪ Observation 1: It’s slow – O(S2A) per iteration

▪ Observation 2: The “max” at each state rarely changes

▪ Observation 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’
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k=0

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



Arora – AI – 4511/6511 GWU 70

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=4

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=5

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=9

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=12

Noise = 0.2
Discount = 0.9
Living reward = 0
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k=100

Noise = 0.2
Discount = 0.9
Living reward = 0
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Policy Methods
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Policy Evaluation
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Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values

▪ If we fixed some policy (s), then the tree would be simpler – only one action per state
▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do
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Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s under a fixed (generally non-
optimal) policy

▪ Define the utility of a state s, under a fixed policy :

V(s) = expected total discounted rewards starting in s and following 

▪ Recursive relation (one-step look-ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’



Arora – AI – 4511/6511 GWU 81

Example: Policy Evaluation

Always Go Right Always Go Forward
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Example: Policy Evaluation

Always Go Right Always Go Forward
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Policy Evaluation

▪ How do we calculate the V’s for a fixed policy ?

▪ Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’
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Policy Extraction
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Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?

▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values
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Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?

▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!



Arora – AI – 4511/6511 GWU 87

Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 
utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 
converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions
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Policy Iteration

▪ Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:



Arora – AI – 4511/6511 GWU 89

Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values)

▪ In value iteration:

▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

▪ In policy iteration:

▪ We do several passes that update utilities with fixed policy (each pass is fast because 
we consider only one action, not all of them)

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

▪ The new policy will be better (or we’re done)

▪ Both are dynamic programs for solving MDPs
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MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs
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Variant 1: MDPs for Continuous World

▪ Two Basic Ideas here..

▪ Either discretize the world (self driving helicopter can increase its 
altitude only in chunks of 10 cm.)

▪ Or, use integration (instead of summation) and use the 
probability distribution (instead of defined Transition Probability 
table)
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Variant 2: Partially Observable MDPs

▪ In addition to the usual MDPs, we are also given:

▪ Sensor Model P(e | s)

▪ But first, one quiz…
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Bayes Theorem

▪ Antonio has an exciting soccer game coming up.  In recent years, 
it has rained only 5 days each year in the city where they live.

▪ Unfortunately, the weatherperson has predicted rain for that 
day. When it actually rains, she correctly forecasts rain 90% of 
the time. When it doesn't rain, she incorrectly forecasts rain 10% 
of the time.

▪ What is the probability that it will rain on the day of Antonio’s 
soccer game?
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Answer!

▪ 0.111
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So, what if we don’t know T values!

▪ We can infer it.

▪ (Slowly)



Arora – AI – 4511/6511 GWU 96

Double Bandits
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Double-Bandit MDP

▪ Actions: Blue, Red

▪ States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount

100 time steps

Both states have 
the same value
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Offline Planning

▪ Solving MDPs is offline planning

▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0
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Other Variants

▪ What if we don’t know what actuators do

▪ What if we don’t know the reward values
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Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0
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Online Planning

▪ Rules changed!  Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

?? 
$2

?? $2

?? 
$0
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Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0
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We can Learn!

▪ That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

▪ Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP
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Summary: MDP Algorithms

▪ So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions
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Next Topic: Reinforcement Learning!

▪ Next Topic!
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