
CS 6511: Artificial Intelligence

Markov Decision Processes

Amrinder Arora
The George Washington University

[An original version of slides by Dan Klein and Pieter Abbeel for UC Berkeley.
http://ai.berkeley.edu]

http://ai.berkeley.edu/

O
u

tl
in

e

AI

Introduction general concepts / agent types

Search

Uninformed search

Informed Search

Adversarial Search

Stochastic Search

Making
Decisions

Constraint Satisfaction
Problem

Markov Decision Processes

Learning

Reinforcement Learning

Markov Models

Hidden Markov Models

Bayes Nets

Arora – AI – 4511/6511 GWU 3

What We Know

▪ We understand rational agent design

▪ Environment types

▪ Objectives

▪ We can search really well

▪ In Uninformed settings

▪ In Informed settings

▪ When there are constraints

▪ When the setting is that of adversarial nature

Arora – AI – 4511/6511 GWU 4

What We Are Missing

▪ Environments are not always deterministic

▪ Rules are not always well known

▪ More interim layers (which add complexity)

Arora – AI – 4511/6511 GWU 5

MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs

Arora – AI – 4511/6511 GWU 6

Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards

Arora – AI – 4511/6511 GWU 7

Grid World Actions

Deterministic Grid World Stochastic Grid World

Arora – AI – 4511/6511 GWU 8

Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

Arora – AI – 4511/6511 GWU 9

Why Study MDPs at all?

Stochastic environment can in fact be solved using Expectimax, so
no reason to study MDPs if such problems were rare (say, once
every 5 years).

But:

1. MDPs are very common, and solution involving them is MUCH
faster than just an expectimax search.

2. Studying MDPs allows us to learn other techniques that can be
used when the environment is unknown.

Arora – AI – 4511/6511 GWU 10

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future
and the past are independent

▪ For Markov decision processes, “Markov” means action outcomes
depend only on the current state

▪ This is just like search, where the successor function could only depend on the current
state (not the history)

Andrey Markov
(1856-1922)

Arora – AI – 4511/6511 GWU 11

Markov, Markov and Chebyshev

▪ https://en.wikipedia.org/wiki/Andrey_Markov

▪ https://en.wikipedia.org/wiki/Vladimir_Markov_(mathematician)

▪ https://en.wikipedia.org/wiki/Pafnuty_Chebyshev

https://en.wikipedia.org/wiki/Andrey_Markov
https://en.wikipedia.org/wiki/Vladimir_Markov_(mathematician)
https://en.wikipedia.org/wiki/Pafnuty_Chebyshev

Arora – AI – 4511/6511 GWU 12

Example: Racing

▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Arora – AI – 4511/6511 GWU 13

Racing Search Tree

Arora – AI – 4511/6511 GWU 14

MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Arora – AI – 4511/6511 GWU 15

MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs

Arora – AI – 4511/6511 GWU 16

Utilities of Sequences

Arora – AI – 4511/6511 GWU 17

Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

▪ 1, 2, 3,1,4 or 2, 2, 2, 2,2

▪ 1 + 2 * 0.9 + 3 * 0.9 * 0.9 + 1 * 0.9 * 0.9 * 0.9 4 * 0.9^4

▪ Vs.

▪ 2 + 2 * 0.9 + 2*0.9^2

▪ 1,2,3 or 2,2,2

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Arora – AI – 4511/6511 GWU 18

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Arora – AI – 4511/6511 GWU 19

Discounting

▪ How to discount?
▪ Each time we descend a level, we

multiply in the discount once

▪ Why discount?

▪ Sooner rewards probably do have higher
utility than later rewards

▪ Also helps our algorithms converge

▪ Example: discount of 0.5

▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

▪ U([1,2,3]) < U([3,2,1])

Arora – AI – 4511/6511 GWU 20

Stationary Preferences

▪ Stationary preferences:

▪ In other words, the prioritization does not change with time, so the
preferences are “stationary”

Arora – AI – 4511/6511 GWU 21

Characterizing Stationary Preferences

▪ Theorem: if we assume stationary preferences:

▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:

Arora – AI – 4511/6511 GWU 22

Utility Sequence Examples

1. Gamma = 0.9

a) [1, 1, 2, 4] = 6.436

b) [2, 1, 3, 4] = 8.246

2. Gamma = 0.8

a) [a, b, c, d] = a + 0.8^1 * b + 0.8^2 * c + 0.8^3 * d

b) [2, 1, 1, 1] = 3.95

3. Gamma = 0.7

a) [1, 2, 2, 1] = 3.723

b) [2, 1, 2, 1] = 4.023

Arora – AI – 4511/6511 GWU 23

Quiz: Discounting

▪ Given:

▪ Actions: East, West, and Exit (only available in exit states a, e)

▪ Transitions: deterministic

▪ Quiz 1: For  = 1, what is the optimal policy?

▪ Quiz 2: For  = 0.1, what is the optimal policy?

▪ Quiz 3: For which  are West and East equally good when in state d?

Arora – AI – 4511/6511 GWU 24

Infinite Utilities?!

▪ Problem: What if the game lasts forever? Do we get infinite rewards?

▪ Solutions:

▪ Finite horizon: (similar to depth-limited search)
▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies ( depends on time left)

▪ Discounting: use 0 <  < 1

▪ Smaller  means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

Arora – AI – 4511/6511 GWU 25

Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0

▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount )

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’

Arora – AI – 4511/6511 GWU 26

MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs

Arora – AI – 4511/6511 GWU 27

Policies

▪ In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

▪ For MDPs, we want an optimal policy *: S →
A

▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes
expected utility if followed

▪ An explicit policy defines a reflex agent

▪ So far, we computed actions, not policies

Optimal policy when R(s, a, s’) = -0.03 for all non-
terminals s

Arora – AI – 4511/6511 GWU 28

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Arora – AI – 4511/6511 GWU 29

MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs

Arora – AI – 4511/6511 GWU 30

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Arora – AI – 4511/6511 GWU 31

Values of States

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’

s’

Arora – AI – 4511/6511 GWU 32

Racing Search Tree

Arora – AI – 4511/6511 GWU 33

Racing Search Tree

Arora – AI – 4511/6511 GWU 34

Racing Search Tree

▪ We’re doing way too much
work with expectimax!

▪ Problem: States are repeated
▪ Idea: Only compute needed

quantities once

▪ Problem: Tree goes on forever

▪ Idea: Do a depth-limited
computation, but with increasing
depths until change is small

▪ Note: deep parts of the tree
eventually don’t matter if γ < 1

Arora – AI – 4511/6511 GWU 35

Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends in k
more time steps

▪ Equivalently, it’s what a depth-k expectimax would give from s

Arora – AI – 4511/6511 GWU 36

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 37

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 38

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 39

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

V(2,3, k=3) =
0.72 * 0.8 * 0.9
+ 0.9 * 0.1 * -1
+ 0.9 * 0.1 * 0

Arora – AI – 4511/6511 GWU 40

Code

▪ For iteration k = 1 to 100

▪ Update matrix

Arora – AI – 4511/6511 GWU 41

Update Matrix

▪ For row = 1 to 4

▪ For column = 1 to 4 // These two loops together, give us O(S)

▪ Update Q_k(a) for Cell (i,j) // Thie one is O(A * S)

▪ // O(A) because there are A actions

▪ // O(S) for one Q_k(a)

▪ Update V_k for Cell(i,j) // This one is O(A)

▪ Total time complexity = O(S) * (O(AS) + O(A))

Arora – AI – 4511/6511 GWU 42

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 43

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 44

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 45

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 46

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 47

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 48

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 49

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 50

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 51

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 52

Computing Time-Limited Values

Arora – AI – 4511/6511 GWU 53

Value Iteration

Arora – AI – 4511/6511 GWU 54

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Arora – AI – 4511/6511 GWU 55

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Arora – AI – 4511/6511 GWU 56

Convergence*

▪ How do we know the Vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth M, then VM holds the
actual untruncated values

▪ Case 2: If the discount is less than 1

▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1
expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge

Arora – AI – 4511/6511 GWU 57

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a

transition

s,a,s’

s is a

state

(s, a) is a

q-state

Arora – AI – 4511/6511 GWU 58

Gridworld Values V*

Arora – AI – 4511/6511 GWU 59

Gridworld: Q*

Arora – AI – 4511/6511 GWU 60

Q*(s,a) Code

▪ For i = 1 to n // All states. S * A * S

▪ For j = 1 to m // All Actions A

▪ Q(i,j) = Sum over all States S (k) { T(i,j,k) * (R (i,j,k) + Gamma * V(k)) }
▪ // For loop over all k

▪ For i = 1 to n // All states. S * A

▪ For j = 1 to m // All Actions A

▪ V(i) = max {V(i), Q(i,j))}

▪ Total time is O(S2 A)

Arora – AI – 4511/6511 GWU 61

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

Arora – AI – 4511/6511 GWU 62

The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a simple
one-step lookahead relationship amongst optimal utility values

▪ These are the Bellman equations, and they characterize optimal values in a
way we’ll use over and over

a

s

s, a

s,a,s’

s’

Arora – AI – 4511/6511 GWU 63

Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Arora – AI – 4511/6511 GWU 64

Convergence*

▪ How do we know the Vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth M, then VM holds the
actual untruncated values

▪ Case 2: If the discount is less than 1

▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1
expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge

Arora – AI – 4511/6511 GWU 65

MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs

Arora – AI – 4511/6511 GWU 66

Policy Iteration

Arora – AI – 4511/6511 GWU 67

Problems with Value Iteration

▪ Value iteration repeats the Bellman updates:

▪ Observation 1: It’s slow – O(S2A) per iteration

▪ Observation 2: The “max” at each state rarely changes

▪ Observation 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’

Arora – AI – 4511/6511 GWU 68

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 69

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 70

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 71

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 72

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 73

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 74

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 75

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 76

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Arora – AI – 4511/6511 GWU 77

Policy Methods

Arora – AI – 4511/6511 GWU 78

Policy Evaluation

Arora – AI – 4511/6511 GWU 79

Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values

▪ If we fixed some policy (s), then the tree would be simpler – only one action per state
▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do

Arora – AI – 4511/6511 GWU 80

Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s under a fixed (generally non-
optimal) policy

▪ Define the utility of a state s, under a fixed policy :

V(s) = expected total discounted rewards starting in s and following 

▪ Recursive relation (one-step look-ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

Arora – AI – 4511/6511 GWU 81

Example: Policy Evaluation

Always Go Right Always Go Forward

Arora – AI – 4511/6511 GWU 82

Example: Policy Evaluation

Always Go Right Always Go Forward

Arora – AI – 4511/6511 GWU 83

Policy Evaluation

▪ How do we calculate the V’s for a fixed policy ?

▪ Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’

Arora – AI – 4511/6511 GWU 84

Policy Extraction

Arora – AI – 4511/6511 GWU 85

Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?

▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values

Arora – AI – 4511/6511 GWU 86

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?

▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!

Arora – AI – 4511/6511 GWU 87

Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions

Arora – AI – 4511/6511 GWU 88

Policy Iteration

▪ Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:

Arora – AI – 4511/6511 GWU 89

Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values)

▪ In value iteration:

▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

▪ In policy iteration:

▪ We do several passes that update utilities with fixed policy (each pass is fast because
we consider only one action, not all of them)

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

▪ The new policy will be better (or we’re done)

▪ Both are dynamic programs for solving MDPs

Arora – AI – 4511/6511 GWU 90

MDPs – Topics Outline

1. MDPs: Model and Example (Definition)

2. Utility Function for a Sequence (and Discounting)

3. Policy versus Sequence

4. Solving MDPs – Optimal Quantities: V, S, Q and R values

5. Solving Faster (Policy Iteration, vs. Value Iteration)

6. Variants of MDPs

Arora – AI – 4511/6511 GWU 91

Variant 1: MDPs for Continuous World

▪ Two Basic Ideas here..

▪ Either discretize the world (self driving helicopter can increase its
altitude only in chunks of 10 cm.)

▪ Or, use integration (instead of summation) and use the
probability distribution (instead of defined Transition Probability
table)

Arora – AI – 4511/6511 GWU 92

Variant 2: Partially Observable MDPs

▪ In addition to the usual MDPs, we are also given:

▪ Sensor Model P(e | s)

▪ But first, one quiz…

Arora – AI – 4511/6511 GWU 93

Bayes Theorem

▪ Antonio has an exciting soccer game coming up. In recent years,
it has rained only 5 days each year in the city where they live.

▪ Unfortunately, the weatherperson has predicted rain for that
day. When it actually rains, she correctly forecasts rain 90% of
the time. When it doesn't rain, she incorrectly forecasts rain 10%
of the time.

▪ What is the probability that it will rain on the day of Antonio’s
soccer game?

Arora – AI – 4511/6511 GWU 94

Answer!

▪ 0.111

Arora – AI – 4511/6511 GWU 95

So, what if we don’t know T values!

▪ We can infer it.

▪ (Slowly)

Arora – AI – 4511/6511 GWU 96

Double Bandits

Arora – AI – 4511/6511 GWU 97

Double-Bandit MDP

▪ Actions: Blue, Red

▪ States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount

100 time steps

Both states have
the same value

Arora – AI – 4511/6511 GWU 98

Offline Planning

▪ Solving MDPs is offline planning

▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Arora – AI – 4511/6511 GWU 99

Other Variants

▪ What if we don’t know what actuators do

▪ What if we don’t know the reward values

Arora – AI – 4511/6511 GWU 100

Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Arora – AI – 4511/6511 GWU 101

Online Planning

▪ Rules changed! Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Arora – AI – 4511/6511 GWU 102

Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

Arora – AI – 4511/6511 GWU 103

We can Learn!

▪ That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

▪ Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP

Arora – AI – 4511/6511 GWU 104

Summary: MDP Algorithms

▪ So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions

Arora – AI – 4511/6511 GWU 105

Next Topic: Reinforcement Learning!

▪ Next Topic!

	Slide 1: CS 6511: Artificial Intelligence
	Slide 2: Outline
	Slide 3: What We Know
	Slide 4: What We Are Missing
	Slide 5: MDPs – Topics Outline
	Slide 6: Example: Grid World
	Slide 7: Grid World Actions
	Slide 8: Markov Decision Processes
	Slide 9: Why Study MDPs at all?
	Slide 10: What is Markov about MDPs?
	Slide 11: Markov, Markov and Chebyshev
	Slide 12: Example: Racing
	Slide 13: Racing Search Tree
	Slide 14: MDP Search Trees
	Slide 15: MDPs – Topics Outline
	Slide 16: Utilities of Sequences
	Slide 17: Utilities of Sequences
	Slide 18: Discounting
	Slide 19: Discounting
	Slide 20: Stationary Preferences
	Slide 21: Characterizing Stationary Preferences
	Slide 22: Utility Sequence Examples
	Slide 23: Quiz: Discounting
	Slide 24: Infinite Utilities?!
	Slide 25: Recap: Defining MDPs
	Slide 26: MDPs – Topics Outline
	Slide 27: Policies
	Slide 28: Optimal Policies
	Slide 29: MDPs – Topics Outline
	Slide 30: Optimal Quantities
	Slide 31: Values of States
	Slide 32: Racing Search Tree
	Slide 33: Racing Search Tree
	Slide 34: Racing Search Tree
	Slide 35: Time-Limited Values
	Slide 36: k=0
	Slide 37: k=1
	Slide 38: k=2
	Slide 39: k=3
	Slide 40: Code
	Slide 41: Update Matrix
	Slide 42: k=4
	Slide 43: k=5
	Slide 44: k=6
	Slide 45: k=7
	Slide 46: k=8
	Slide 47: k=9
	Slide 48: k=10
	Slide 49: k=11
	Slide 50: k=12
	Slide 51: k=100
	Slide 52: Computing Time-Limited Values
	Slide 53: Value Iteration
	Slide 54: Value Iteration
	Slide 55: Example: Value Iteration
	Slide 56: Convergence*
	Slide 57: Optimal Quantities
	Slide 58: Gridworld Values V*
	Slide 59: Gridworld: Q*
	Slide 60: Q*(s,a) Code
	Slide 61: The Bellman Equations
	Slide 62: The Bellman Equations
	Slide 63: Value Iteration
	Slide 64: Convergence*
	Slide 65: MDPs – Topics Outline
	Slide 66: Policy Iteration
	Slide 67: Problems with Value Iteration
	Slide 68: k=0
	Slide 69: k=1
	Slide 70: k=2
	Slide 71: k=3
	Slide 72: k=4
	Slide 73: k=5
	Slide 74: k=9
	Slide 75: k=12
	Slide 76: k=100
	Slide 77: Policy Methods
	Slide 78: Policy Evaluation
	Slide 79: Fixed Policies
	Slide 80: Utilities for a Fixed Policy
	Slide 81: Example: Policy Evaluation
	Slide 82: Example: Policy Evaluation
	Slide 83: Policy Evaluation
	Slide 84: Policy Extraction
	Slide 85: Computing Actions from Values
	Slide 86: Computing Actions from Q-Values
	Slide 87: Policy Iteration
	Slide 88: Policy Iteration
	Slide 89: Comparison
	Slide 90: MDPs – Topics Outline
	Slide 91: Variant 1: MDPs for Continuous World
	Slide 92: Variant 2: Partially Observable MDPs
	Slide 93: Bayes Theorem
	Slide 94: Answer!
	Slide 95: So, what if we don’t know T values!
	Slide 96: Double Bandits
	Slide 97: Double-Bandit MDP
	Slide 98: Offline Planning
	Slide 99: Other Variants
	Slide 100: Let’s Play!
	Slide 101: Online Planning
	Slide 102: Let’s Play!
	Slide 103: We can Learn!
	Slide 104: Summary: MDP Algorithms
	Slide 105: Next Topic: Reinforcement Learning!

