lim(n->infinity)(log(f(n))/log(g(n))) = lim n->infinity (1/(f(n)*ln2) * f'(n)) / (1/(g(n) * ln2)) * g'(n))
= lim n->infinity (g(n)/f(n) * f'(n)/g'(n))
lim n->infinity (g(n)/f(n)) = infinity
lim n->infinity (f'(n)/g'(n)) = 0
let f(n) = n, g(n) = n^2
lim n-> infinity (f(n)/g(n)) = lim n-> infinity (1/n)
= 0
f(n) = o(g(n))
In this condition
lim(n->infinity)(log(f(n))/log(g(n))) = lim n->infinity (n * 1/2n)
= 1
so it is not necessary that log (f(n)) = o(log (g(n))) when f(n) = o(g(n))