To minimize the weight of the linear k-partition of the given array A[1:n], you can use dynamic programming. Define a 2D array DP where DP[i][j] represents the minimum weight of the linear j-partition for the subarray A[1:i]. The recurrence relation can be expressed as follows:
DP[i][j] = min{1 < x < i} { DP[x][j-1] + sum(A[x+1:i]) }]
Here, sum(A[x+1:i]) represents the sum of elements in the subarray A[x+1:i].
The base case is DP[i][1] = sum(A[1:i]) since the minimum weight of a linear 1-partition is the sum of the entire array.
The final answer will be in DP[n][k], as it represents the minimum weight of the linear k-partition for the entire array A.
DP[i][j] = min(DP[i][j], DP[x][j - 1] + prefix_sums[i] - prefix_sums[x])
return DP[n][k]
code:
def linear_k_partition(A, k):
n = len(A)
prefix_sums = [0] * (n + 1)
for i in range(1, n + 1):
prefix_sums[i] = prefix_sums[i - 1] + A[i - 1]
DP = [[float('inf')] * (k + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
DP[i][1] = prefix_sums[i]
for j in range(2, k + 1):
for i in range(1, n + 1):
for x in range(i):
DP[i][j] = min(DP[i][j], DP[x][j - 1] + prefix_sums[i] - prefix_sums[x])
return DP[n][k]
A = [4, 8, 7, 6, 5, 1, 2, 3]
k = 3
result = linear_k_partition(A, k)
print(result)