T(n)=T(n-1)+T(n/2)+1;
T(n)-T(n-1)=T(n/2)+1;
T(n-1)-T(n-2)=T(n-1/2)+1;
T(n-2)-T(n-3)=T(n-2/2)+1;
T(2)-T(1)=T(1)+1;
Add all the function together
T(n)-T(1)=(n-1)+T(1)-+[T(n/2)+ T(n-1/2)…T(1)],so T(n)=n+ [T(n/2)+ T(n-1/2)…T(2/2)];
Let we calculate the last parts
T(n/2)= T((n/2)-1)+T(n/4)+1= T(n-2/2)+T(n/4)+1
T(n/2)-T(n-2/2)= T(n/4)+1;
T(n-1/2)-T(n-3/2)= T(n-1/4)+1;
T(n-2/2)-T(n-4/2)= T(n-2/4)+1;
T(3/2)-T(1/2)=T(3/4)+1=T(1)+1
T(2/2) =T(1)
So, the T(n/2)+ T(n-1/2)…T(1)=[ T(n/4)+ T(n-1/4)+…T(3/4)]+n;
T(n/4)+ T(n-1/4)+…T(3/4)= T(n/8)+T(n-1/8)+... T(5/8)
Finally, we can get T(n)=theta((n)^log2n)