1 + 2•3 + 3•9 + … + (k+1)•3k = ?
(k is a non-negative integer)
Let S=1+2.3+3.9+....+(k+1).3k
Multiply by 3
3S=1.3+2.9+....+k3k+(k+1).3k+1
Subtract both equations
-2S=(3+32+33+...+3k)-(k+1).3k+1+1
-2S=[3.(3k-1)/(3-1)]-(k+1).3k+1+1
So S=(1/2).{(K+1).3k+1-([3.(3k-1)]/2)-1}