Given R(n) = T(n-1) + n^2
so, R(n-1) = T(n-2) + (n-1)^2
T(n)= T(n-2) + (n-1)^2+nlognT(n) = n^2 + (n-1)^2 + (n-2)^2...
The sum of squares of k numbers is k(k+1)(2k+1)/6 which is order of k^3
Hence T(n) = n^3